18.704 PROBLEM SET 4 DUE: MAR. 19, 11:59PM EDT

For this entire problem set, $\mathfrak{g} = \mathfrak{sl}_2$.

Definition. For $\lambda \in \mathbb{C}$, let M_{λ} denote the Verma module of \mathfrak{sl}_2 of highest weight λ . Let L_{λ} denote the irreducible quotient representation of M_{λ} .

From HW3, you know that $L_{\lambda} = M_{\lambda}$ if $\lambda \notin \mathbb{Z}_{>0}$ and $L_{\lambda} = V_{\lambda}$ when $\lambda \in \mathbb{Z}_{>0}$.

1. Show that Verma modules have the following property: for any $\lambda \in \mathbb{C}$ and $U(\mathfrak{g})$ -module V, we have

$$\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}, V) = \operatorname{Hom}_{U(\mathfrak{g})}(U(\mathfrak{g}) \underset{U(\mathfrak{b})}{\otimes} \mathbb{C}_{\lambda}, V) = \operatorname{Hom}_{\mathfrak{b}}(\mathbb{C}_{\lambda}, \operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}} V).$$

Here $\mathfrak{b} \subset \mathfrak{g}$ is the Lie subalgebra spanned by h, e and for any \mathfrak{g} -representation V, we can simply considered it as a \mathfrak{b} -representation $\operatorname{Res}^{\mathfrak{g}}_{\mathfrak{b}} V$ by restricting the action of \mathfrak{g} to the subalgebra \mathfrak{b} .

(Hint: use HW3, Problem 3,5.)

Definition. A $U(\mathfrak{g})$ -module M is a **highest weight representation** (or module) of highest weight λ if there is a vector $v^+ \in M[\lambda]$ such that M is spanned by $f^i v^+$ for $i = 0, 1, \ldots, \infty$.

The representations M_{λ} and L_{λ} are all highest weight representations.

- **2.** Using Problem 1, deduce that:
- (a) Any highest weight representation of highest weight λ is a quotient of M_{λ} .
- (b) Any irreducible, highest weight representation is isomorphic to L_{λ} for some $\lambda \in \mathbb{C}$.

3. Recall the Casimir element $C = \frac{1}{2}H^2 + FE + EF \in U(\mathfrak{g})$. Show that C acts on M_{λ} as scalar multiplication $\chi_{\lambda} \cdot \operatorname{Id}$ where $\chi_{\lambda} = \frac{\lambda(\lambda+2)}{2}$. (Note that it is NOT automatic that C acts by a scalar when M_{λ} is not irreducible.)

4. Let $\lambda, \mu \in \mathbb{C}$ such that $\mu - \lambda$ is NOT in $\mathbb{R}_{>0}$ (i.e., $\lambda \not\leq \mu$). Suppose you have a short exact sequence

$$0 \to M_{\mu} \to V \to M_{\lambda} \to 0$$

of \mathfrak{g} -representations, such that the action of $H \in \mathfrak{g}$ on V is diagonalizable (i.e., V decomposes into H-eigenspaces). Show that V must be isomorphic to $M_{\mu} \oplus M_{\lambda}$ as representations.