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Abstract. The zero-divisor graph of a commutative semigroup with zero is the graph
whose vertices are the nonzero zero-divisors of the semigroup, with two distinct vertices
adjacent if the product of the corresponding elements is zero. New criteria to identify zero-
divisor graphs are derived using both graph-theoretic and algebraic methods. We find the
lowest bound on the number of edges necessary to guarantee a graph is a zero-divisor graph.
In addition, the removal or addition of vertices to a zero-divisor graph is investigated by using
equivalence relations and quotient sets. We also prove necessary and sufficient conditions
for determining when regular graphs and complete graphs with more than two triangles
attached are zero-divisor graphs. Lastly, we classify several graph structures that satisfy all
known necessary conditions but are not zero-divisor graphs.

1. Introduction

The zero-divisor graph was first introduced by Beck (1988) in the study of commutative
rings, and later studied by Anderson and Livingston (1999). F. DeMeyer (DeMeyer et al.,
2002) pioneered the use of zero-divisor graphs to study semigroups. A graph G = (V,E) is
a set of vertices V and edges E. Edges are unordered pairs of vertices, and we say vertices
x and y are adjacent, denoted x − y, if there is an edge (x, y) ∈ E. The degree d(x) of a
vertex x is the number of vertices adjacent to x. Let S be a commutative semigroup with
zero. The zero-divisor graph of S, denoted Γ(S), is the graph with vertices corresponding
to the nonzero zero-divisors of S, and distinct zero-divisors x and y are adjacent if and
only if xy = 0. The zero-divisor graph provides a connection between graph theory and
algebraic theory that aids in the study of the zero-divisor ideal. Many properties of Γ(S)
have been discovered. For example, Γ(S) is connected and diam(Γ(S)) ≤ 3 (i.e., there exists
a path of length at most 3 between every two vertices) (Anderson and Livingston, 1999).
For a graph G and U ⊆ V (G), the subgraph of G induced by U , denoted G[U ], is the graph
with V (G[U ]) = U and edge (u, v) ∈ E(G[U ]) if and only if (u, v) ∈ E(G). The core of
a graph G is defined to be the largest induced subgraph of G such that every edge in the
core is part of a cycle (see Figure 1). DeMeyer et al. (2002) proved that if Γ(S) contains
a cycle, then the core of G is a union of quadrilaterals and triangles and any vertex not
in the core is an end (a vertex of degree 1). Define the neighborhood N(x) of a vertex x
to be the set of all vertices adjacent to x. DeMeyer and DeMeyer (2005) showed that for
every pair of nonadjacent vertices x and y in Γ(S), there must exist a vertex z such that

N(x)∪N(y) ⊆ N(z), where N(z) := N(z)∪{z} is the closure of N(z). The aforementioned
necessary conditions are sufficient for graphs with fewer than 6 vertices to be zero-divisor
graphs (DeMeyer and DeMeyer, 2005), but no general necessary and sufficient conditions for
zero-divisor graphs are known.

A few classes of graphs are currently known to be zero-divisor graphs. The complete graph
Kn has n vertices and all distinct vertices are adjacent. The (disjoint) union G1 ∪ G2 of
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Figure 1. The graph G (left) and the core of G (right). Note that G contains
a degree 2 vertex not in the core, so it is not a zero-divisor graph.

graphs G1, G2 with disjoint vertex sets is the graph with V (G1 ∪G2) = V (G1) ∪ V (G2) and
E(G1 ∪ G2) = E(G1) ∪ E(G2), and the join G1 ∨ G2 of graphs G1, G2 is the union of the
two graphs with additional edges (v1, v2) for all v1 ∈ G1, v2 ∈ G2. Let pKn denote the union
of p complete graphs (e.g., pK1 represents p isolated vertices). Then the complete n-partite
graph is Kp1,p2,...,pn =

∨n
i=1 piK1. A 2-partite graph is called bipartite. K1,p is called a star

graph, and the vertex adjacent to p other vertices is the center of the star graph. Note that
K1,1 is a star graph and has two centers. A graph is called the refinement of a star graph
if there exists a vertex adjacent to all other vertices. Complete graphs, complete graphs
together with an end, complete bipartite graphs, complete bipartite graphs together with an
end, and refinements of star graphs are zero-divisor graphs (DeMeyer and DeMeyer, 2005).
The semigroups S whose zero-divisor graph is an n-partite graph are described in DeMeyer
et al. (To appear).

In this paper, we continue work on determining when an arbitrary graph is a zero-divisor
graph and on characterizing all semigroups corresponding to a zero-divisor graph. We find the
lowest possible bound on the number of edges e(G) in a graph G that guarantees G = Γ(S).
Wu and Lu (2008) showed that for a zero-divisor semigroup S and vertex x of Γ(S), re-
moving all ends attached to x results in a sub-semigroup of S. We prove in Proposition 3.1
that if a vertex x is only adjacent to vertices of higher degree, then removing all vertices
with neighborhoods that are a subset of N(x) from Γ(S) results in a zero-divisor graph, thus
obtaining the previous result as a corollary. Wu and Lu (2006) showed that for n ≥ 4, the
complete graph Kn together with two end vertices has a unique corresponding zero-divisor
semigroup, and Kn together with three end vertices has no corresponding semigroups. We
continue this work by classifying when Kn with at least 3 degree 2 vertices attached is a
zero-divisor graph. We additionally investigate when the removal or addition to Γ(S) of ver-
tices with identical neighborhoods results in another zero-divisor graph by using equivalence
relations and quotient sets. We find that one can often determine if a graph is a zero-divisor
graph by examining particular subgraphs. Let Ik = {x ∈ V (Γ(S)) | d(x) ≥ k} ∪ {0} for
a positive integer k. DeMeyer and DeMeyer (2005) proved that {Ik} is a decreasing chain
of ideals in S. We study I∆, the set of all vertices with maximum degree, and in doing so
prove a necessary and sufficient condition for determining if a regular graph (a graph where
all vertices have equal degree) is a zero-divisor graph. The complement G of graph G is the
graph with the same vertices as G and with two vertices adjacent in G if and only if they
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are not adjacent in G. Jiang et al. (2006) showed that a graph is never a zero-divisor graph
if its complement is a complete graph with at least 4 vertices that each has at least one end.
In section 5, we generalize this result by showing that graphs with “modified star graphs”
as their complements are never zero-divisor graphs.

Through this paper, all semigroups are multiplicative commutative semigroups with zero.
We call a semigroup a zero-divisor semigroup if it consists solely of zero-divisors. The set of
zero-divisors (including 0) of semigroup S, denoted Z(S), forms an ideal. Note that Z(S)
is then a zero-divisor semigroup and Γ(S) = Γ(Z(S)). For a ∈ S, define the annihilator
set of a as ann(a) := {x ∈ S | xa = 0}. Observe that ann(a) = N(a) ∪ {0} if a2 6= 0 and

ann(a) = N(a)∪{0} if a2 = 0. Note that for a semigroup S and a, b ∈ S with ab 6= 0, we have

N(a)∪N(b) ⊆ N(ab) since ann(a)∪ann(b) ⊆ ann(ab). Finally, we used a computer program
to generate all non-isomorphic graphs with 6 vertices that are not zero-divisor graphs, but
satisfy all previously known necessary conditions; these are shown in Figure 2.

ivi ii iii

Figure 2. All graphs with 6 vertices that are not zero-divisor graphs but
satisfy the mentioned necessary conditions.

2. Edge counting

In this section, we show that all connected graphs with a sufficient number of edges are
zero-divisor graphs. It is straightforward to see that complete graphs Kn and complete
graphs Kn with p edges removed are always zero-divisor graphs if p is very small relative
to n. For this reason, we characterize graphs by the number of edges in their complements,
and define Kn,p to be the set of all connected graphs with n vertices and e(Kn) − p edges.

Note that a complete graph Kn has e(Kn) =
(
n
2

)
= n(n−1)

2
edges.

For p < n−1, any graph in Kn,p has a disconnected complement. We therefore introduce a
helpful lemma which allows us to break graphs with disconnected complements into smaller
subgraphs.

Let the disjoint graph Γ∗(S) of a semigroup S be the simple graph whose vertices are the
nonzero elements (not necessarily zero-divisors) of S with distinct vertices x and y connected
with an edge if xy = 0. The construction of Γ∗(S) is very similar to the construction of Γ(S).
In fact, a graph G is the disjoint graph of a semigroup if and only if it is the union of the zero-
divisor graph of a semigroup and some number of isolated vertices. To show this, observe
that all zero-divisors in the disjoint graph must be contained in one connected component.
The zero-divisors form an ideal, so we have the desired union. Conversely, let G = Γ(S).
Define T = S ∪ {v1, . . . , vn} with the rules induced from S and vix = v1 for all x ∈ T .
Associativity holds, so T is a semigroup with Γ∗(T ) = G ∪ nK1.
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When not specified, the graph of a semigroup refers to the standard zero-divisor graph.

Lemma 2.1. If graphs {Gα} are disjoint graphs of semigroups, then G =
∨
Gα is a zero-

divisor graph.

Proof. Suppose each Gα = Γ(Sα∪{0}), where Sα∪{0} is a semigroup. Define S =
⋃
Sα∪{0}

with the rules induced from Sα and ab = 0 if a, b are not in the same Sα. Then (ab)c =
a(bc) = 0 if a, b, and c are not in the same Sα; so S is associative and thus a semigroup with
Γ(S) = G. �

Lemma 2.2. Let G =
∨
Gα be a graph. Then each Gα is the disjoint graph of a semigroup

if G is a zero-divisor graph, |Gα| > 1, and Gα is not the refinement of a star graph for all α.

Proof. Assuming G = Γ(S), where S is a semigroup, let Sα be the set of elements of S
associated with V (Gα). Take a, b ∈ Sα and suppose ab = x ∈ Sβ for α 6= β. Since |Sβ| > 1
and Gβ is not the refinement of a star graph, there exists y ∈ Sβ such that (ab)y = xy 6= 0,
but a(by) = a(0) = 0, contradicting associativity. Hence ab ∈ Sα, and Sα∪{0} is a semigroup
with Γ(Sα ∪ {0}) = Gα. �

Corollary 2.3. Let G be a connected graph which is not the refinement of a star graph,
and let H1, . . . , Hm be the connected components of the complement graph G. Then G is a
zero-divisor graph if and only if each G[V (Hi)] is the disjoint graph of a semigroup.

Corollary 2.4. Any complete k-partite graph is a zero-divisor graph.

We call an edge u− v with d(u) = d(v) = 1 a single component edge.
The degree sequence of a graph is the non-increasing sequence of its vertex degrees.

Theorem 2.5.

(1) All graphs in Kn,p for p ≤ dn/2e+ 1 are zero-divisor graphs.

(2) For every integer p with dn/2e+ 1 < p ≤ e(Kn)− (n− 1) = (n−1)(n−2)
2

, there exists a
graph in Kn,p which is not a zero-divisor graph.

Proof. (1) Assume p ≤ dn/2e + 1. Take G ∈ Kn,p, which is a complete graph with p edges
removed. If p ≤ bn−1

2
c, then G is missing at most n−1

2
edges. Thus removing p edges from

Kn decreases the degree of at most n − 1 distinct vertices, leaving at least one vertex with
degree n− 1. Hence G is the refinement of a star graph, which is the graph of a semigroup.

Now suppose bn−1
2
c < p ≤ dn/2e + 1. For n even, observe that p = n

2
, n

2
+ 1, and for n

odd, p = n+1
2
, n+3

2
. If G has a vertex of degree n − 1, then G is the graph of a semigroup.

We next consider the four cases where G has no vertex of degree n− 1.

Case 1. n is even, p = n
2
. In order for G to not be the refinement of a star graph, G must

have degree sequence {n − 2, n − 2, . . . , n − 2}, which implies that all p of the edges in G
must be single component edges.

Case 2. n is even, p = n
2

+1. Then G can have degree sequence {n−3, n−3, n−2, . . . , n−2}
or {n− 4, n− 2, . . . , n− 2}; so G has at least p− 4 single component edges.

Case 3. n is odd, p = n+1
2

. Then G can only have degree sequence {n− 3, n− 2, . . . , n− 2};
so G has exactly p− 2 single component edges.
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Case 4. n is odd, p = n+3
2

. Then G can have degree sequence {n−5, n−2, . . . , n−2}, {n−
4, n− 3, n− 2, . . . , n− 2}, or {n− 3, n− 3, n− 3, n− 2, . . . , n− 2}; so G has at least p− 6
single component edges.

Let k be the number of single component edges in G. Removing all such components from
G, we have a graph W with n− 2k vertices and p− k edges. Looking at the previous cases
again,

Case 1. n− 2k = n− 2p = 0 and p− k = 0.

Case 2. n− 2k ≤ n− 2(p− 4) = 6 and p− k = n
2

+ 1− k.

Case 3. n− 2k ≤ n− 2(p− 2) = 3 and p− k = n+1
2
− k.

Case 4. n− 2k ≤ n− 2(p− 6) = 9 and p− k = n+3
2
− k.

In all cases, n − 2k ≤ 9 and p − k ≤ dn−2k
2
e + 1. We checked using a computer program

that all (possibly disconnected) graphs with m vertices and e(Km) − q edges for for m ≤
9, q ≤ dm/2e+ 1 are disjoint graphs of semigroups. Therefore W is the disjoint graph of a
semigroup, and the complement of each single component edge is 2K1; so from Corollary 2.3,
G is a zero-divisor graph.

(2) Assume dn/2e+ 1 < p ≤ e(Kn)− (n− 1), which forces n > 4. Let G be a graph with n
vertices {v1, . . . , vn} and (n−1) edges v1−v3, v1−v4, . . . , v1−vn−1, v2−v4, v2−vn. Add edges to
G so that G has e(Kn)−max(n, p) edges, but the n edges v1−v2, v2−v3, . . . , vn−1−vn, vn−v1

are not in G. If p < n, then also add in the edges v4+2j−v5+2j for 0 ≤ j < n−p. Then v1, v2

are nonadjacent and from construction N(v1) ∪ N(v2) = {v3, v4, . . . , vn}. For i = 1, 2, 3, n,

we have vi−1, vi+1 /∈ N(vi), and for 3 < i < n, either vi−1 /∈ N(vi) or vi+1 /∈ N(vi). Thus

there is no vi with N(v1) ∪N(v2) ⊆ N(vi). Therefore G is not a zero-divisor graph.
Notice that v4 ∈ N(v1)∩N(v2). Therefore the path v1− v4− v2 connects v1 and v2. Since

every vertex is contained in either N(v1) or N(v2), this shows that G is connected. Thus G
is in Kn,p. �

Remark. The number of edges e(Kn) =
(
n
2

)
= 〈n(n − 1)〉2; so it follows from the theorem

that a connected graph G is a zero-divisor graph if e(G) ≥
(
n
2

)
− dn/2e − 1. The set Kn,p

contains a refinement of a star graph for p ≤ e(Kn) − (n − 1); so it cannot be determined
from e(G) whether G is a zero-divisor graph when n− 1 ≤ e(G) <

(
n
2

)
− dn/2e − 1. Lastly,

any G with e(G) < n− 1 cannot be connected.

3. Removing and adding vertices

Corollary 2.3 shows that methods of identifying zero-divisor graphs from smaller subgraphs
are very useful. We investigate when removing or adding vertices to zero-divisor graphs also
result in zero-divisor graphs.

For the rest of the paper, all semigroups are assumed to be zero-divisor semigroups.

3.1. Removing vertices. The following proposition introduces a new semigroup ideal,
which provides a sufficient condition for removing a set of vertices with similar neighborhoods
from a zero-divisor graph.
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Proposition 3.1. Let G = Γ(S), a ∈ V, and T (a) = {x : N(x) ⊆ N(a)}. If N(x) −
N(a) 6= ∅ for all x ∈ N(a), then (V − T (a)) ∪ {0} is an ideal, and the induced subgraph
G[(V − T (a)) ∪ {a}] is the disjoint graph of a semigroup.

Proof. Take x ∈ V −T (a) and y /∈ N(x). Then N(x)∪N(y) ⊆ N(xy). If |N(x)−N(a)| > 1,
then N(xy) 6⊆ N(a). Next, suppose that |N(x) − N(a)| = 1 and N(xy) ⊆ N(a). Since

N(x) ⊆ N(xy) but N(x) 6⊆ N(a), we must have N(x)−N(a) = {xy}. Therefore xy and x
are adjacent; so x ∈ N(xy) ⊆ N(a). Hence a and x are adjacent, and a ∈ N(x)−N(a). By

assumption, N(x) − N(a) 6= ∅; so a 6= xy. This contradicts |N(x) − N(a)| = 1. Therefore
N(xy) 6⊆ N(a) and V − T (a) forms an ideal.

Let A = {x : N(x) = N(a)}. Suppose there does not exist an x ∈ A such that x2 ∈ (V −
T (a)) ∪ {0, x}. Then there must be a C = {x1, . . . , xk} ⊆ A with k ≥ 2 such that x2

i = xi+1

for i = 1, . . . , k − 1 and x2
k = x1. Suppose x = x1x2 · · ·xk /∈ A. Then N(a) = N(x1) ⊆ N(x)

implies either N(a) ( N(x) since x /∈ A or x ∈ N(a). We must have x ∈ (V −T (a))∪{0} in
both cases. Since (V−T (a))∪{0} is an ideal, x1(x1x2 · · ·xk) = x2x2 · · ·xk = x1 ∈ (V−T (a))∪
{0}, a contradiction. Therefore x ∈ A, but (x1x2 · · ·xk)2 = x2

1x
2
2 · · ·x2

k = x2 · · ·xkx1 = x,
another contradiction. Thus there must exist an x ∈ A with x2 ∈ (V −T (a))∪{0, x}. Again,
since (V − T (a)) ∪ {0} forms an ideal, (V − T (a)) ∪ {0, x} is a sub-semigroup. �

The conditions in the previous lemma are always satisfied if d(x) > d(a) for all x ∈ N(a)
or if a is an end.

3.2. Quotient semigroups and graphs. We further investigate removing vertices with the
same neighborhoods from zero-divisor graphs by using equivalence relations and quotients
on semigroups and their associated graphs.

A congruence ∼ on a semigroup S is an equivalence relation with the property that
a ∼ b, x ∼ y ⇒ ax ∼ by for all a, b, x, y ∈ S.

Let∼ be an equivalence relation on S. Define the binary operation · on S/∼ by [a][b] := [ab]
for a, b ∈ S, where ab is the product of a and b under the binary operation in semigroup S.

Theorem 3.2 (Howie, 1976, Theorem 5.3). (S/∼, ·) is a well-defined semigroup if and only
if ∼ is a congruence on S.

We define the annihilator equivalence relation ∼A on S by a ∼A b if ann(a) = ann(b).

Theorem 3.3. ∼A is a congruence on S.

Proof. By inspection, ∼A is an equivalence relation. Suppose a ∼A b and x ∼A y. Then
z ∈ ann(ax) ⇒ (ax)z = a(xz) = 0 ⇒ xz ∈ ann(a) = ann(b) ⇒ z ∈ ann(bx). Thus
ann(ax) ⊆ ann(bx), and similarly ann(bx) ⊆ ann(by). Hence ann(ax) ⊆ ann(by), and thus
ann(by) ⊆ ann(ax) by symmetry. Hence ann(ax) = ann(by); so ax ∼A by. Therefore ∼A is
a congruence. �

Corollary 3.4. (S/∼A, ·) is a semigroup.

We call the semigroup S/∼A the annihilator quotient semigroup of S. Since x2 may or may
not equal 0 for x ∈ S, the zero-divisor graph of the annihilator quotient semigroup cannot
be constructed from only Γ(S). Annihilator sets are, however, very similar to neighborhood

sets: ann(x) = N(x) ∪ {0} for x ∈ S − {0} if x2 6= 0, and ann(x) = N(x) ∪ {0} for
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x ∈ S − {0} if x2 = 0. We show that neighborhood quotient graphs provide information on
possible semigroups associated to the original graph.

Define the open neighborhood equivalence relation ∼O on the vertex set V by u ∼O v if
N(u) = N(v). Similarly define the closed neighborhood equivalence relation ∼C by u ∼C v if

N(u) = N(v). We construct the open neighborhood graph Ξo(G) with V (Ξo(G)) = V (G)/∼O
and [v]O, [w]O ∈ V (Ξo(G)) are adjacent if and only if v, w ∈ G are adjacent. Likewise, define
the closed neighborhood quotient graph Ξc(G) by using ∼C .

An equivalent definition of Ξo(G) is to construct Ξo(G) by removing a vertex u from G
if there is a vertex v with N(u) = N(v), and repeating this process until no such vertex
remains. The analogous definition is true for Ξc(G). These alternate definitions show that
Ξo(G) ∼= Ξo(Ξo(G)) and Ξc(G) ∼= Ξc(Ξc(G)). This behavior is mirrored in annihilator
quotient semigroups.

Theorem 3.5. Let S be a zero-divisor semigroup with [0] = {0} ∈ S/∼A, and let [a], [b] ∈
S/∼A. Then ann([a]) = ann([b]) if and only if [a] = [b].

Proof. Let a, b ∈ S such that ann([a]) = ann([b]). Then za = 0 ⇒ [z][a] = [0] ⇒ [z] ∈
ann([a]) = ann([b]) ⇒ [zb] = [z][b] = [0] = {0} ⇒ zb = 0. Thus ann(a) ⊆ ann(b) and by
symmetry ann(b) ⊆ ann(a); so [a] = [b]. The other direction is obvious. �

Corollary 3.6. If S is a zero-divisor semigroup with [0] = {0} ∈ S/∼A, then S/∼A ∼=
(S/∼A)/∼A.

Observing that S = V ∪ {0} for a zero-divisor semigroup S, we extend ∼O and ∼C to

equivalence relations on semigroups by setting N(0) := V and N(0) := S. Let [x]O denote
an element of S/∼O and [x]C denote an element of S/∼C . Note that [0]O = [0]C = {0} under

both equivalence relations because a /∈ N(a) and N(a) ⊆ V for a 6= 0.
If ∼O is a congruence, Theorem 3.2 implies (S/∼O, ·) is a semigroup, and we observe that

Γ(S/∼O) = Ξo(Γ(S)). Similarly if ∼C is a congruence, then Γ(S/∼C) = Ξc(Γ(S)).

Proposition 3.7. Let G = Γ(S). If Ξo(G) is not a zero-divisor graph, then there exists an
x ∈ S − {0} with x2 = 0. If G is not the refinement of a star graph, and Ξc(G) is not a
zero-divisor graph, then there exists an x ∈ S − {0} with x2 6= 0.

Proof. Suppose x2 6= 0 for all x ∈ S − {0}. Then ∼A and ∼O are equivalent; so Γ(S/∼A) =
Ξo(G), a contradiction. Suppose x2 = 0 for all x ∈ S. There does not exist y ∈ S with
ann(y) = ann(0) since G is not a refinement of a star graph. Therefore ∼A and ∼C are
equivalent; so Γ(S/∼A) = Ξc(G), a contradiction. �

Proposition 3.8. If S is a semigroup and ∼O is a congruence, then x2 6= 0 for all 0 6= x ∈ S
with |[x]O| > 1. If S is a semigroup and ∼C is a congruence, then x2 = 0 for all 0 6= x ∈ S
with |[x]C | > 1.

Proof. Suppose ∼O is a congruence and there exists a nonzero x ∈ S with |[x]O| > 1 and
x2 = 0. Pick y ∈ [x]O not equal to x. Then y ∼O x ⇒ N(y) = N(x) ⇒ xy 6= 0; so
[0]O = [x2]O = [x]O[x]O = [x]O[y]O = [xy]O contradicts S/∼O being a semigroup.

Suppose ∼C is a congruence and there exists a nonzero x ∈ S with |[x]C | > 1 and

x2 6= 0. Pick y ∈ [x]C not equal to x. Then y ∼C x ⇒ N(y) = N(x) ⇒ xy = 0; so
[0]C = [xy]C = [x]C [y]C = [x]C [x]C contradicts S/∼C being a semigroup. �
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The following examples show when ∼O and ∼C may or may not be congruences. They
also illustrate how the previous propositions may be used to determine whether ∼O and ∼C
are congruences.

Example 3.9. Let G be the graph in Figure 3. Let S be the zero-divisor semigroup with
G = Γ(S) and rules xy = x, x2 = 0, y2 = y, a2 = a, b2 = b, and c2 = c.
Then [x]O = {x, y} but x2 = 0, so by Proposition 3.8, the relation ∼O is not a congruence
on S. By direct calculation, S/∼C is a semigroup, so ∼C is a congruence.

c

x
b

a

y

Figure 3. Graph G in Example 3.9.

Example 3.10. Let G be the graph in Figure 4. Let S be the zero-divisor semigroup with
G = Γ(S) and rules a2 = 0, b2 = b, c2 = c, x2 = x, y2 = y, ay = a, by = b, and cy = c.
As S ∼= S/∼O, we have that S/∼O is a semigroup, so ∼O is a congruence on S. Since
[a]C = {a, b, c} but b2 = b 6= 0, Proposition 3.8 shows that ∼C is not a congruence on S.

y

a

b

c

x

Figure 4. Graph G in Example 3.10.

Example 3.11. Let G be the graph in Figure 5. Let S be the zero-divisor semigroup with
G = Γ(S) and rules x2 = 0, y2 = y, and a2 = b2 = c2 = ab = bc = ac = a.
By direction calculation, both S/∼O and S/∼C are semigroups, so ∼O and ∼C are both
congruences on S.
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Example 3.12. Let G be the graph in Figure 6. Let S be the zero-divisor semigroup with
G = Γ(S) and rules x2 = 0, y2 = y, a2 = 0, b2 = b, c2 = c, s2 = s, t2 = t, xt = x, yt =
y, xy = x, at = a, bt = b, and ct = c.
We see that [x]O = {x, y} but x2 = 0, so by Proposition 3.8, the relation ∼O is not a
congruence on S.
Also note that [b]C = {a, b, c} but b2 = b 6= 0, so again by Proposition 3.8, the relation ∼C
is not a congruence on S.

3.3. Adding vertices. As quotient graphs are formed by removing duplicate vertices, we
investigate the “inverse” operation of adding duplicate vertices to a graph.

First we note that adding duplicate vertices to a zero-divisor graph does not always result
in another zero-divisor graph.

Example 3.13. (1) The union of a 4-cycle a1 − a2 − b1 − b2 and one vertex c1, where
N(c1) = {b1, b2}, is a zero-divisor graph. (2) The union of the same 4-cycle with c1, c2, . . . , cm
vertices for m ≥ 2 with N(ci) = {b1, b2} is never a zero-divisor graph.

Proof. (1) Let S = {a1, a2, b1, b2, c1} with rules

· 0 a1 a2 b1 b2 c1

0 0 0 0 0 0 0
a1 0 a1 0 b1 0 b1

a2 0 0 a2 0 b2 b2

b1 0 b1 0 0 0 0
b2 0 0 b2 0 0 0
c1 0 b1 b2 0 0 0

One can check that S is associative and therefore a semigroup.

(2) Let G be the union of a 4-cycle a1−a2−b1−b2 with vertices c1, . . . , cm (m ≥ 2). Suppose

G = Γ(S). Then {a2, b1, b2} = N(a1)∪N(ci) ⊆ N(a1ci)⇒ a1ci = b1, and similarly a2ci = b2.
For i 6= j, (a1ci)cj = b1cj = 0 ⇒ cicj ∈ ann(a1), and similarly cicj ∈ ann(a2). Therefore
cicj ∈ ann(a1) ∩ ann(a2) ⊆ {a1, a2}. However {b1, b2} ⊆ ann(cicj), a contradiction. �

The next lemma presents a very useful condition for when duplicate vertices can be added.

b

x

c

a

y

Figure 5. Graph G in Example 3.11.
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Figure 6. Graph G in Example 3.12.

. . .c1

b2 b1

a1 a2 a1

b2

a2

b1

cmc1

Figure 7. The graph on the left is a zero-divisor graph, but the graph on the
right is not.

Lemma 3.14. Let G = Γ(S). For any a ∈ S, adding a vertex b to G with N(b) = N(a) if

a2 6= 0 or N(b) = N(a) if a2 = 0 results in a zero-divisor graph.

Proof. Let S ∪ {b} have rules induced from S. Define bx = ax for all x ∈ S − {a}, and
b2 = ab = a2. It is clear that (xy)z = x(yz) if the rule ab = a2 is not used. Otherwise if
xy = a, we have ab = (xy)b = x(yb) = x(ya) = (xy)a = a2. Note that xy never equals b.
Lastly, (ab)x = (a2)x = a(ax) = a(bx) = b(ax). Therefore S ∪ {b} is a semigroup, and one
can check that Γ(S ∪ {b}) produces the desired graph. �

Corollary 3.15. Let G = Γ(S). Then there exist infinitely many non-isomorphic zero-
divisor graphs that contain G as a subgraph.

Proof. With knowledge of the squares of elements in S, Lemma 3.14 allows us to “expand”
the graph G by adding infinitely many additional vertices. �

Corollary 3.16. Let G = Γ(S) with a ∈ V . If the graph formed by adding a vertex b to G
with N(b) = N(a) is not a zero-divisor graph, then a2 = 0 in S.

If the graph formed by adding a vertex b to G with N(b) = N(a) is not a zero-divisor
graph, then a2 6= 0 in S.

10



Example 3.17. Let G = Γ(S) be the graph with V = {a1, a2, b1, b2, c1} as in Figure 7.
Adding a vertex c2 to G with N(c2) = N(c1) does not result in a zero-divisor graph, so
c2

1 = 0 in S from Corollary 3.16.

Corollary 3.18. Let G be a connected graph that is not the graph of a semigroup. Then
Ξo(G) (with vertices [x]O, x ∈ V (G)) is not the graph of a semigroup S that has [x]2O 6= 0
for all 0 6= [x]O ∈ S with |[x]O| > 1, and Ξc(G) is not the graph of a semigroup S that has
[x]2C = 0 for all 0 6= [x]C ∈ S with |[x]C | > 1.

Corollary 3.19. Let G be a connected graph. If Ξo(G) = Γ(S) (with vertices [x]O, x ∈
V (G)) for a semigroup S satisfying the property that [x]2O 6= 0 for all nonzero [x]O ∈ S with
|[x]O| > 1, then G is a zero-divisor graph.

If Ξc(G) = Γ(S) for a semigroup S satisfying the property that [x]2C = 0 for all nonzero
[x]C ∈ S with |[x]C | > 1, then G is a zero-divisor graph.

Example 3.20. LetG be the graph in Figure 8. Define semigroup S = {[0]O, [x1]O, [y1]O, [z1]O}
with [x1]2 = [x1], [y1]2 = [y1], [z1]2 = [z1], and all other products equal to 0. As Ξo(G) =
Γ(S), Corollary 3.19 implies G is a zero-divisor graph.

G

x1

x2

y1

y2

z2

z1

[x1] [y1]

[z1]

Ξo(G)

Figure 8. The octahedron G is a zero-divisor graph since Ξo(G) = Γ(S), and
S satisfies the property stated in Corollary 3.19.

Lemma 3.14 can only be used if one knows the value of a2. The next lemma provides more
specific graph conditions for when a2 cannot equal 0.

Lemma 3.21. Let G = Γ(S) and a ∈ V . If there exists y /∈ N(a) such that for each

x ∈ N(a), there exists z /∈ N(a) not equal to y that satisfies one of the following conditions:

(1) z /∈ N(x) and y − z;

(2) z /∈ N(x), z /∈ N(y), and for all w such that N(y) ∪N(z) ⊆ N(w), w ∈ N(a);

(3) z − x, z /∈ N(y), and for all w such that N(y) ∪N(z) ⊆ N(w), w /∈ N(a);

then adding another vertex with the same neighbors as a results in the graph of a semigroup.

Proof. Suppose a2 = 0. Then a(ay) = a2y = 0 ⇒ ay ∈ N(a). Suppose ay = x ∈ N(a).
Examining the 3 conditions, we have

(1) (ay)z = xz 6= 0 and a(yz) = 0, or

(2) (ay)z 6= 0 and N(y) ∪N(z) ⊆ N(yz)⇒ a(yz) = 0, or

(3) (ay)z = xz = 0 and yz /∈ N(a)⇒ a(yz) 6= 0.
11



Associativity does not hold, so we have a contradiction. Therefore a2 6= 0. Then from
Lemma 3.14, we can add another vertex with same neighbors as a to G. �

Theorem 3.22. Let G = Γ(S) be a graph with cycles.

(1) If a is an end adjacent to x, adding another end to x still results in a zero-divisor
graph.

(2) Removing an end results in a zero-divisor graph.

Proof. (1) If x is adjacent to every other vertex, then adding another end results in the

refinement of a star graph. Otherwise, there exists z /∈ N(x). Pick y ∈ N(z). Then

y 6= x ⇒ y /∈ N(a). Now G satisfies the conditions of Lemma 3.21, since N(a) = {a, x},
z /∈ N(a), and z /∈ N(x).

(2) Let x have k ends. From Proposition 3.1, removing all ends adjacent to x except one
results in a zero-divisor graph. Then using (1), we can add another k−2 ends to x, resulting
in k − 1 ends. �

It has been determined in previous literature when adding ends to a complete graph results
in a zero-divisor graph. We continue the study of adding vertices to complete graphs. The
next theorem deals with complete graphs with triangles attached.

Theorem 3.23. Let G be a graph with vertices a1, a2, a3, x1, . . . , xn for n ≥ 4. Suppose the
induced subgraph G[{xk}nk=1] = Kn, d(ai) = 2, N(ai) ⊆ {xk}nk=1, and N(ai) 6⊆ N(aj) for all
i 6= j. Then G is a zero-divisor graph if and only if N(ai) ∩N(aj) 6= ∅ for all i, j.

We introduce two lemmas to prove the theorem.

Lemma 3.24. Suppose G = Γ(S) and I is an ideal of S. Then there cannot exist distinct
x1, x2 ∈ I and distinct a1, a2, a3 /∈ I that satisfy the conditions:

(1) I ⊆ N(x1) ∩N(x2),
(2) {x1, x2} ⊆ N(a1),
(3) a2 and a3 are not adjacent,

(4) {x : N(a2) ∪N(a3) ⊆ N(x)} ⊆ I ∪ (N(x1) ∩N(x2)), and
(5) (N(a2) ∪N(a3)) ∩ (N(a1) ∩ I) = ∅.

Proof. Assume for contradiction that the previous conditions hold. Then x2
1a1 = x1(x1a1) =

0 ⇒ x2
1 ∈ ann(a1) ∩ I. Suppose x2

1 ∈ ann(a1) ∩ I − {0, x1}. Then condition 5 requires
that x2

1a2 6= 0 and x2
1a3 6= 0. Therefore x1a2 ∈ I − N(x1), so x1a2 = x1 by condition 1.

Similarly x1a3 = x1, and (x1a2)a3 = x1. This is a contradiction since conditions 3 and 4

imply a2a3 ∈ I ∪N(x1) ⊆ N(x1). Therefore x2
1 ∈ {0, x1} and similarly x2

2 ∈ {0, x2}.
Case 1. Suppose x2

1 = x1 and x2
2 = x2.

Condition 5 implies a2, a3 are not adjacent to x1, x2 so x2
1a2 = x1a2 6= 0. Then x1a2 ∈

I−N(x1)⇒ x1a2 = x1. Similarly, x1a3 = x1. Conditions 3 and 4 imply a2a3 ∈ N(x1). Then
(x1a2)a3 = x1a3 = x1 implies a2a3 = x1. By symmetry, however, we also get a2a3 = x2, a
contradiction.

Case 2. Suppose x2
1 = 0.

Conditions 3 and 4 imply a2a3 ∈ N(x1). Therefore (x1a2)a3 = x1(a2a3) = 0 ⇒ x1a2 ∈
N(a3). Condition 5 then requires that x1a2 /∈ N(a1). However (x1a2)a1 = a2(x1a1) = 0, a
contradiction.

12



We get a similar contradiction when x2
2 = 0. Therefore we have contradictions in all cases;

so G is not a zero-divisor graph. �

a3

x1 x2

a1

a2

Figure 9. The graph for Example 3.25.

Example 3.25. The graph given in Figure 9 is not a zero-divisor graph. Let the ideal be
I8, and label a1, a2, a3, x1, x2 as in the figure. The graph then satisfies the conditions of
Lemma 3.24, so it cannot be a zero-divisor graph.

Lemma 3.26. Let G be a graph with vertices a1, a2, a3, x1, . . . , xn where G[{xk}nk=1] = Kn,

(1) N(ai) ⊆ {xk}nk=1,
(2) N(ai) 6⊆ N(aj) for all i 6= j,
(3) N(a1) ∩N(a2) 6= ∅, N(a2) ∩N(a3) 6= ∅, and N(a1) ∩N(a3) = ∅, and
(4) one of: |N(a1)−N(a2)| > 1, |N(a3)−N(a2)| > 1, or N(a2) ⊆ N(a1) ∪N(a3).

Then G is not a zero-divisor graph.

Proof. Pick x1 ∈ N(a1)−N(a2), which exists by condition 2. Then a2x1 ∈ N(a1)⇒ a2x1 /∈
N(a3) by conditions 1 and 3. Hence (a2a3)x1 = a3(a2x1) 6= 0. Since N(a2) ∪ N(a3) ⊆
N(a2a3), we cannot have a2a3 = ai by condition 2. Therefore a2a3 = x1; so a2a3 cannot be
defined if |N(a1)−N(a2)| > 1. Similarly a1a2 cannot be defined if |N(a3)−N(a2)| > 1. Now

suppose {x1 = a2a3} = N(a1) − N(a2) and {a1a2} = N(a3) − N(a2). Then a3x1 ∈ N(a1),

and by condition 3, a3x1 /∈ N(a3). Hence a2
3x1 = a3(a3x1) 6= 0; so a2

3 ∈ {x1, a2, a3}. By

assumption a1a2 /∈ N(a2), and a1a2 6= a2 since N(a1) ∪N(a2) ⊆ N(a1a2). Therefore a2
2a1 =

a2(a1a2) 6= 0⇒ a2
2 /∈ N(a1). Again by condition 2, a2

2 6= a1; so a2
2 /∈ N(a1). Suppose a2

3 = a2.

Then a2
2 = a2a

2
3 = (a2a3)a3 = x1a3 ∈ N(a1), a contradiction. Therefore a2

3 ∈ {x1, a3}. Now

pick x2 ∈ N(a1) ∩ N(a2). In particular, x2 6= x1. Then a3x2 ∈ N(a1) ⇒ a3x2 /∈ N(a3)
by condition 3. Hence a2

3x2 6= 0 ⇒ a2
3 6= x1, and a2

3 must equal a3. We similarly conclude

a2
1 = a1. We now have (a1a3)a2 = a1(a2a3) = a1x1 = 0 ⇒ a1a3 ∈ N(a2). Using condition

2 again, a1a3 6= a2; so a1a3 ∈ N(a2). We also have a1(a1a3) = a1a3 ⇒ a1a3 /∈ N(a1), and
(a1a3)a3 = a1a3 ⇒ a1a3 /∈ N(a3). Therefore N(a2) 6⊆ N(a1) ∪N(a3). �

Example 3.27. The graph G given in Figure 10 is not a zero-divisor graph. Labeling
a1, a2, a3 as in the figure, we observe that V (G) = V (K9) ∪ {a1, a2, a3} and G satisfies the
conditions in Lemma 3.26, so it is not a zero-divisor graph.

13



a3a1

a2

Figure 10. Graph for Example 3.27.

Figure 11. Theorem 3.23 shows that the graph on the left is a zero-divisor
graph, while the graph on the right is not.

Proof of Theorem 3.23. (⇒) Suppose without loss of generality that N(a1) ∩N(a3) = ∅. If
N(a1) ∩ N(a2) = ∅ or N(a2) ∩ N(a3) = ∅, then the graph is not a zero-divisor graph from
Lemma 3.24 using the ideal In. Therefore N(a1) ∩N(a2) 6= ∅ and N(a2) ∩N(a3) 6= ∅. Now
G satisfies Lemma 3.26, so it is again not a zero-divisor graph. Therefore N(ai)∩N(aj) 6= ∅
for all i, j.

(⇐) Assume N(ai)∩N(aj) 6= ∅ for all i, j, and G is not the refinement of a star graph. Then
let N(a1) ∩ N(a2) = {x3}, N(a1) ∩ N(a3) = {x2}, and N(a2) ∩ N(a3) = {x1}. Define S
with operations a2

i = ai, a1a2 = a1a3 = a2a3 = xn, x
2
i = 0 for i 6= n, x2

n = xn, aixj = xi for
xj /∈ N(ai)∪{xn}, and aixn = xn. One can check that S is a semigroup with G = Γ(S). �

Corollary 3.28. Adding at least 4 triangles to a complete graph with at least 4 vertices
results in a zero-divisor graph if and only if the graph is a refinement of a star graph.

Proof. Let G be a complete graph with m ≥ 4 triangles which is not the refinement of a
star graph. We can always remove m− 3 triangles from G to obtain a graph that does not
satisfy the conditions in Theorem 3.23 and is therefore not a zero-divisor graph. It follows
from Proposition 3.1 that G is also not the graph of a semigroup. �

Example 3.29. See Figure 11.
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4. Vertex degrees

Many of the results in the previous section involved vertex neighborhoods, so we investigate
zero-divisor graphs based on the order of these neighborhoods, or in other words the degrees
of the vertices.

Let ∆, δ denote the maximum and minimum degrees of a graph, respectively.

Lemma 4.1. Let G = Γ(S) and 0 6= x ∈ S with d(x) = ∆. Then N(y) ⊆ N(x) for all
y /∈ N(x).

Proof. Since x and y are not adjacent, N(x) ∪ N(y) ⊆ N(xy) − {x}. If x ∈ N(xy), then

|N(x) ∪ N(y)| ≤ |N(xy) − {x}| ≤ ∆. Then N(y) ⊆ N(x) since |N(x)| = ∆. Otherwise if
xy /∈ N(x), then N(x) ⊆ N(xy). Since |N(xy)| ≤ ∆ = |N(x)|, we have N(x) = N(xy).
Because x and y are not adjacent, y /∈ N(x) = N(xy) ⇒ xy /∈ N(y). Therefore N(y) ⊆
N(xy) = N(x). �

Proposition 4.2. If dδ · (|G| −∆− 1)/∆e+ 1 > ∆, then G is not a zero-divisor graph.

Proof. Pick x ∈ V with d(x) = ∆. Then V = {x, y1, . . . , yn−∆−1, w1, . . . , w∆} where n =
|G|, x − wi for i = 1, . . . ,∆, and x and yi are not adjacent for i = 1, . . . , n −∆ − 1. From
Lemma 4.1, we have the inclusion N(yi) ⊆ N(x); so yi can only be adjacent to wj’s. Each
yi must be adjacent to at least δ vertices (for δ · (n − ∆ − 1) total adjacencies), so by the
pigeonhole principle, there must exist wi with degree d(wi) ≥ dδ · (n−∆− 1)/∆e+ 1 > ∆,
a contradiction. �

Recall that G[I∆] is the induced subgraph on G of all vertices of maximum degree.

Proposition 4.3. If G = Γ(S), then G[I∆] is either connected or the graph of isolated
vertices. If G[I∆] are isolated vertices, at most one x ∈ I∆ − {0} has x2 = 0.

Proof. Suppose G[I∆] has more than one connected component, vertices a and b are in the
same component with a − b, and a, b are both not adjacent to c. Then from Lemma 4.1,
N(c) = N(a) and N(c) = N(b)⇒ a and b are not adjacent, a contradiction.

Suppose G[I∆] are isolated vertices and there exist x, y ∈ I∆ − {0} with x2 = y2 = 0.
Then x2y = 0 ⇒ xy ∈ ann(x). Since I∆ is an ideal, xy ∈ ann(x) ∩ I∆ = {0, x}. As xy is
nonzero, xy = x⇒ (xy)y = xy = x contradicts xy2 = 0. �

A k-regular graph is a graph where δ(G) = ∆(G) = k. Many well studied graphs are
regular graphs, and the next theorem provides a necessary and sufficient condition for de-
termining which regular graphs are zero-divisor graphs.

Theorem 4.4. A connected k-regular graph G is a zero-divisor graph if and only if n−k | n
and G =

∨n/(n−k)(n− k)K1.

Proof. (⇒) Define the relation ∼ on V by u ∼ v if u and v are non-adjacent in G. The
relation ∼ is clearly reflexive and symmetric since G is a simple graph. Since G is regular,
every vertex has maximum degree. Then Lemma 4.1 says that u ∼ v and v ∼ w ⇒ N(u) ⊆
N(v) ⊆ N(w)⇒ u ∼ w; so ∼ is transitive. Therefore ∼ is an equivalence relation.

Set Q = V/∼ and consider [v] ∈ Q. Since G is regular, v must be adjacent to k vertices
and therefore not adjacent to n − k vertices, including itself. Hence [v] has order n − k.
Since Q forms a partition of V , n− k | n. It is easy to see that each [v] corresponds to one

15



(n− k)K1, so G =
∨n/(n−k)(n− k)K1.

(⇐) Follows from Corollary 2.4. �

Example 4.5. The Petersen graph (see Godsil and Royle, 2001) is a 3-regular graph with
10 vertices. Since 7 does not divide 10, the Petersen graph is not a zero-divisor graph.

5. Special graphs

5.1. Removing modified star graphs. We show that a particular collection of graphs
characterized by their complements are never zero-divisor graphs.

Theorem 5.1. Let G be a graph. Suppose the complement G is the graph of m star graphs
with centers c1, c2, . . . , cm where ci is adjacent to βi ≥ 2 degree 1 vertices αi,1, αi,2, . . . , αi,βi
and at least two ci vertices are adjacent (see Figure 12). Then G is not a zero-divisor graph.

αm,βmαm,2

. . . . . . . . . . . .

. . .

c2 cmc1

α2,β2α2,1 α2,2α1,β1 αm,1α1,2α1,1

Figure 12. G satisfying conditions of Theorem 5.1.

Proof. Suppose G = Γ(S). Without loss of generality, let c1, c2 be non-adjacent ⇒ c1c2 6= 0.
We then consider the two cases c1c2 = ck and c1c2 = αk,h.

Case 1. Suppose c1c2 = ck. Then {αi 6=1,j} ⊆ N(c1) and {αi 6=2,j} ⊆ N(c2); so {αi,j} ⊆
N(c1) ∪N(c2) ⊆ N(c1c2) = N(ck), a contradiction.

Case 2. Suppose c1c2 = αk,h. Without loss of generality, let k 6= 2. Fix l such that
1 ≤ l ≤ β2. Then (c1c2)α2,l = αk 6=2,hα2,l = 0 ⇒ 0 6= c2α2,l ∈ ann(c1) ⇒ c2α2,l 6= α1,j. We

notice that N(αi,j) ⊆ N(xαi,j). Hence xαi,j 6= cm for x ∈ S; so the set I = {αi,j} ∪ {0}
forms an ideal in S. Therefore c2α2,l ∈ I ∩ ann(c1) = {αi 6=1,j}. For i > 2, we have
ci(c2α2,l) = (ciα2,l)c2 = 0 ⇒ c2α2,l 6= 0 ∈ ann(ci) ⇒ c2α2,l 6= αi>2,j. Hence c2α2,l = α2,j ⇒
c2(c2α2,l) = c2α2,j 6= 0 ⇒ c2

2 /∈ ann(α2,l) ⇒ c2
2 /∈ (I − {α2,l}) ∪ {ci 6=2} ⇒ c2

2 ∈ {c2, α2,l}.
Additionally, (c1c2)c2 = αk,hc2 = 0 ⇒ c2

2 ∈ ann(c1). Since c1 and c2 are non-adjacent in G,
we have c2 /∈ ann(c1). Therefore c2

2 = α2,l. This is true for all 1 ≤ l ≤ β2 and since β2 ≥ 2,
we have a contradiction.

There is a contradiction in both cases, so G cannot be a zero-divisor graph. �

Example 5.2. Let G be the graph in Figure 13. Note that G is one of the graphs mentioned
in Figure 2. The complement G is the union of two star graphs with adjacent centers, so
Theorem 5.1 implies G is not the graph of a semigroup.

The following theorem is a corollary to a result by Jiang et al. (2006).
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G

c1 c2

α1,2α2,2

α2,1 α1,1

G

c1 c2

α1,2α2,2

α2,1 α1,1

Figure 13. Graphs G and G in Example 5.2.

Theorem 5.3 (Jiang et al., 2006). Let G be the graph of m ≥ 3 star graphs with centers
c1, c2, . . . , cm where ci is adjacent to βi ≥ 1 degree 1 vertices αi,1, αi,2, . . . , αi,βi and all ci are
adjacent to each other. Then G is not the graph of a semigroup.

5.2. Removing 2 modified star graphs with shared vertices.

Theorem 5.4. Let G be the graph of 2 star graphs with centers c1, c2 where ci is adjacent
to βi ≥ 2 degree 1 vertices αi,1, . . . , αi,βi; c1, c2 are adjacent; and c1, c2 are both adjacent to
β3 ≥ 1 degree 2 vertices α3,1, . . . , α3,β3. Then G is the graph of a semigroup.

Proof. Let S = V ∪ {0} with operations c2
i = ci, c1c2 = α3,1, ciαi,j = αi,1, ciα3,1 =

α3,1, ciα3,j 6=1 = αi,1, α
2
3,1 = α3,1, and all other products equal to 0. Checking associativity,

(cici)cj = cicj = α3,1 = ciα3,1 = ci(cicj) for i 6= j. If αi,j 6= α3,1, then (c1c2)αi,j = α3,1αi,j =
0 = c1(c2αi,j) = c2(c1αi,j). Next, we have (c1c2)α3,1 = α3,1 = c1(c2α3,1). If i 6= k, 3, then
ck(ckαi,j) = 0 = (c2

k)αi,j. Otherwise, ck(ckαi,j) = ckαi,1 = (c2
k)αi,j. If αi,j = αh,l = α3,1,

then ck(α3,1α3,1) = α3,1 = (ckα3,1)α3,1. Otherwise ck(αi,jαh,l) = 0 = (ckαi,j)αh,l. Finally,
multiplying three α’s will equal 0 unless all three are α3,1. Therefore S is a semigroup, and
clearly G = Γ(S). �

6. Conclusion and open problems

Theorem 2.5 proves that all graphs with a sufficient number of edges are zero-divisor
graphs. Corollary 2.3, Lemma 3.14, and Corollary 3.19 give conditions when one may de-
termine if a graph is a zero-divisor graph by inspecting smaller subgraphs. The annihilator,
open neighborhood, and closed neighborhood equivalence relations coupled with quotient
graphs describe properties of the possible semigroups associated to a graph. While work-
ing with quotient graphs, we observed the following conjecture, which we leave as an open
problem.

. . . . . .. . .

c1 c2

α2,2 α2,β2α2,1α3,1 α3,β3α3,2α1,1 α1,2 α1,β1

Figure 14. G satisfying conditions of Theorem 5.4.
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Conjecture 6.1. If G is a zero-divisor graph, then so are Ξo(G) and Ξc(G).

Theorem 3.23 and Corollary 3.28 answer the question of when adding at least 3 degree 2
vertices to a complete graph results in a zero-divisor graph. The problem of adding higher
degree vertices to a complete graph is still unsolved.

Theorem 4.4 provides a necessary and sufficient condition for determining regular zero-
divisor graphs. From our study of maximum vertex degrees, we observe that:

Conjecture 6.2. If ∆ ≤ d|G|/3e, then G is not the graph of a semigroup.

We used a computer program to check that Conjecture 6.2 holds for all graphs with
|G| ≤ 12. The following example shows the difficulty in proving this conjecture.

Example 6.3. Construct a graph G with V = {ai,j : 1 ≤ i ≤ 10, 1 ≤ j ≤ 4} ∪ {xi : 1 ≤
i ≤ 10}, N(ai,j) = {xi, xi+1 (mod 10)}, and G[{xi}] = K10. As |G| = 50 and ∆ = 17, we have
∆ = d|G|/3e, which satisfies Conjecture 6.2. Suppose G = Γ(S). Then by Proposition 3.1,
removing all vertices ai,j for j > 1 results in the graph of a semigroup. This graph is,
however, K10 with 10 triangles and not the refinement of a star graph, and therefore not the
graph of a semigroup by Corollary 3.28. Hence G cannot be the graph of a semigroup.

The graph G, however, satisfies all previously found necessary conditions, indicating that
Conjecture 6.2 cannot be proved using only known results.

Finally, Theorem 5.1 proves a general class of graphs are never zero-divisor graphs, in-
cluding many graphs that satisfy all previous conditions. We are, however, still trying to
find a necessary and sufficient condition for determining zero-divisor graphs.
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