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Abstract

Minimally nonideal matrices are a key to understanding when the set covering problem
can be solved using linear programming. The complete classification of minimally nonideal
matrices is an open problem. One of the most important results on these matrices comes
from a theorem of Lehman, which gives a property of the core of a minimally nonideal
matrix. Cornuéjols and Novick gave a conjecture on the possible cores of minimally nonideal
matrices. This paper disproves their conjecture by constructing a new infinite family of
square minimally nonideal matrices. In particular, we show that there exists a minimally
nonideal matrix with r ones in each row and column for any r ≥ 3.
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1. Introduction

Minimally nonideal matrices are a key to understanding when the set covering problem
problem can be solved using linear programming. The set covering problem is a fundamental
problem in combinatorial optimization [1], and many combinatorial problems can be reduced
to it. We can represent a collection of sets with a 0, 1 m × n matrix A by letting the rows
be the elements to cover and the columns be the sets, with aij = 1 if set j contains element
i. Then the set covering problem may be formulated as finding

min{cTx | Ax ≥ 1, x ∈ {0, 1}n},

where 1 is the vector with ones in all entries, inequalities hold coordinate-wise, and c ∈ Rn

is an objective function.
Define the set covering polyhedron of A by

Q(A) = {x ∈ Rn | Ax ≥ 1, x ≥ 0}.

A point x ∈ Q(A) is called an extreme point if for any two points y, z ∈ Q(A) such that
x = (y + z)/2, we must have x = y = z. A matrix A is ideal if Q(A) is integral, i.e.,
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all its extreme points have integer coordinates. The set covering problem is NP-complete
in general, but in the special case when A is ideal, the problem can be solved using linear
programming for any objective function c. Ideal matrices are also known as width-length
matrices [2, 3], matrices with the weak max-flow min-cut property [4], or matrices with the
max-flow min-cut property [2, 3]. One natural way to study ideal matrices is to consider the
“smallest” possible matrices that are not ideal. A matrix A is minimally nonideal (mni) if

1. A does not contain a dominating row,

2. A is not ideal, and

3. for all i = 1, . . . , n, the two polyhedra Q(A)∩{x | xi = 0} and Q(A)∩{x | xi = 1} are
integral.

A row x of A is dominating if for some other row y we have x ≥ y.
Define the circulant matrix Cr

n as the n× n matrix with columns indexed by Z/nZ and
rows equal to the incidence vectors of {i, i+ 1, . . . , i+ r − 1} for i ∈ Z/nZ. Also define the
point-line incidence matrix of a degenerate projective plane Jn for n ≥ 2 to be the square
(n+ 1)× (n+ 1) matrix with columns indexed by {0, . . . , n} and rows equal to the incidence
vectors of {1, . . . , n}, {0, 1}, {0, 2}, . . . , {0, n}. Lehman [2] noted that C2

n for n ≥ 3 odd and
Jn for n ≥ 2 are mni matrices.

Let the blocker b(A) be the matrix with n columns where the rows are the minimal 0, 1
vectors xT ∈ {0, 1}n under the dominance ordering such that x ∈ Q(A). A 0, 1 matrix A
is an mni matrix if and only if its blocker b(A) is an mni matrix [2]. Lehman proved the
following seminal theorem on the structure of mni matrices.

Theorem 1 ([3]). If A is an mni matrix, then Q(A) has a unique fractional extreme point,
and either

1. A is isomorphic to Jn for n ≥ 2, or

2. the rows of A (resp. b(A)) may be permuted so that A (resp. b(A)) contains a square
n × n submatrix Ā (resp. B̄) with exactly r ≥ 2 (resp. s ≥ 2) ones in each row and
column, and ĀB̄T = Jn + (rs − n)In (where Jn is the matrix of all ones). Moreover,
every other row of A (resp. b(A)) has more than r (resp. s) ones.

Two matrices are isomorphic if one can be obtained from the other by permutations of rows
and/or columns. The square submatrix Ā is called the core of A. The core of A is unique
up to isomorphism.

Cornuéjols and Novick [5] characterized all ideal and mni circulant matrices Cr
n. They

also conjectured that C2
n and C

(n+1)/2
n for n ≥ 3 odd are essentially the only possible cores

of mni matrices.

Conjecture 2 ([5], Conjecture 1.2). There exists an n0 such that except for the degenerate

projective planes Jn, each mni matrix with n ≥ n0 has core isomorphic to C2
n or C

(n+1)/2
n for

n ≥ 3 odd.
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In order to study cores of mni matrices, Lütolf and Margot [6] defined the class of Lehman
matrices. Two square 0, 1 n × n matrices A,B form a pair of Lehman matrices if ABT =
Jn + dIn for some positive integer d. Bridges and Ryser [7] showed that a Lehman matrix
must have the same number of ones in each row and column. Two infinite families of Lehman
matrices are known: point-line incidence matrices of nondegenerate finite projective planes [8]
and Lehman matrices with d = 1. Novick [9] showed that the only nondegenerate finite
projective plane with an mni point-line incidence matrix is the Fano plane F7. Cornuéjols
et al. [10] studied Lehman matrices with d = 1 according to their similarity to the circulant
matrices Cr

n. Wang [11] used graphs to provide additional properties of Lehman matrices
with d = 1.

In this paper, we describe a new infinite family of square mni matrices and disprove
Conjecture 2. In Section 2, for each r ≥ 3 we construct a 0, 1 (r2 − 1)× (r2 − 1) matrix Ωr.
We show in Section 3 that Ωr is a Lehman matrix with d = 1, i.e., there exists for each r
a square 0, 1 matrix B such that ΩrB

T = Jr2−1 + Ir2−1. In Section 4, we prove that Ωr is
mni by showing Q(Ωr) has a unique fractional extreme point. We also describe the blocker
of Ωr. Our results show that there exists an mni matrix with r ones in each row and column
for any r ≥ 3.

2. Construction

Let r ≥ 3 and n = r2 − 1. Let Jr−1 denote the (r − 1) × (r − 1) matrix with all entries
equal to 1, and let Eij be the 0, 1 (r − 1)× (r − 1) matrix with a single 1 in row i, column
j. We define the n× n matrix Ωr by

Ωr :=



Jr−1 E11 E22 . . . Er−1,r−1 0
0 Jr−1 E11 Er−2,r−2 Er−1,r−1

Er−1,r−1 0 Jr−1 Er−3,r−3 Er−2,r−2
...

. . .
...

E22 E33 E44 Jr−1 E11

E11 E22 E33 . . . 0 Jr−1


,

where each block is (r − 1)× (r − 1).
Recall that if X is an m×n matrix and Y is a k× ` matrix, then the Kronecker product

X ⊗ Y is the mk × n` block matrix

X ⊗ Y :=

x11Y . . . x1nY
...

...
xm1Y . . . xmnY

 .
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If we let P be the (r + 1)× (r + 1) matrix

P :=


1

1
. . .

1
1

 ,

then Ωr can be more succinctly expressed using Kronecker products as

Ωr = Ir+1 ⊗ Jr−1 + P ⊗ E11 + P 2 ⊗ E22 + · · ·+ P r−1 ⊗ Er−1,r−1.

Our goal is to prove the following theorem.

Theorem 3. For any r ≥ 3, the matrix Ωr is an mni matrix.

3. Ωr is Lehman

We first introduce some new notation that will be used throughout the rest of this paper.
For i ∈ {1, . . . , r + 1} and j ∈ {1, . . . , r − 1}, define

i⊗ j := (i− 1)(r − 1) + j ∈ {1, . . . , n}.

The motivation for this notation is that we can decompose a vector x ∈ Rn into

x =
r+1∑
i=1

r−1∑
j=1

xi⊗j(ui ⊗ vj), xi⊗j ∈ R

where ui, vj are the standard basis vectors for Rr+1,Rr−1.
Let π ∈ Sr+1 be the permutation of order r + 1 defined by

π(i) = i+ 1 for i ≤ r, π(r + 1) = 1.

Define Ai⊗j to be the (i⊗j)th row vector of the matrix Ωr. By definition, Ai⊗j is the incidence
vector of

{i⊗ 1, . . . , i⊗ (r − 1), πj(i)⊗ j}. (1)

Set the 0, 1 vector yi⊗j to be the incidence vector of

{π(i)⊗ 1, . . . , πr−1(i)⊗ (r − 1), πr(i)⊗ j}. (2)

We use the above notation to prove that Ωr is a Lehman matrix with d = 1.

Lemma 4. There exists a 0, 1 n× n matrix B satisfying

ΩrB
T = Jn + In.
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Proof. Let i ∈ {1, . . . , r + 1} and j ∈ {1, . . . , r − 1}. Since π0(i) = i, we see from (1) that

Ai⊗`y
i⊗j = 1, ` ∈ {1, . . . , r − 1}

Aπr(i)⊗`y
i⊗j = 1, ` ∈ {1, . . . , r − 1} (3)

Aπk(i)⊗`y
i⊗j = 1 + δk,r−jδj`, k, ` ∈ {1, . . . , r − 1}.

Therefore Ωry
i⊗j = 1 + uπr−j(i) ⊗ vj. If we define B to be the n × n matrix with row i ⊗ j

equal to yπ
j+1(i)⊗j, then

ΩrB
T = Jn + In.

4. Proof of Theorem 3

In order to prove Ωr is mni, we must study the set covering polyhedron

Q(Ωr) = {x ∈ Rn | Ωrx ≥ 1, x ≥ 0}.

Recall that a point x ∈ Q(Ωr) is called an extreme point if for any two points y, z ∈ Q(Ωr)
such that x = (y+ z)/2, we must have x = y = z. An easy extension of the definition shows
that if x is an extreme point and x dominates a convex combination of points of Q(Ωr), then
x must be equal to one of the points in the convex combination. Note that an extreme point
satisfies x ≤ 1 since Ωr is a 0, 1 matrix.

The following two lemmas by Lütolf and Margot [6] provide sufficient conditions for a
Lehman matrix to be mni.

Lemma 5 ([6], Lemma 2.7). If A is a Lehman matrix with r ones in each row and column,
then (1/r, . . . , 1/r) is a fractional extreme point of Q(A).

Lemma 6 ([6], Lemma 2.8). If A is a Lehman matrix such that Q(A) has a unique fractional
extreme point, then A is an mni matrix.

We see from the construction that Ωr has r ones in each row and column. It follows from
the previous two lemmas that the following theorem implies Theorem 3.

Theorem 7. For r ≥ 3, the polyhedron Q(Ωr) has unique fractional extreme point (1/r, . . . , 1/r).

We use the notation introduced in Section 3. Define the linear map ηi : Rn → R for
i ∈ {1, . . . , r + 1} by

ηi(x) :=
r−1∑
j=1

xi⊗j.

Let Z denote the set of n-dimensional 0, 1 vectors that contains exactly one 1 in each
(r − 1) block, so

Z = {z ∈ {0, 1}n | ηi(z) = 1 for all i = 1, . . . , r + 1}.

Observe that Z ⊂ Q(Ωr).
The maps ηi play a central role in the proof of Theorem 7. We first present two lemmas

related to these maps.
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Lemma 8. If x ∈ Rn, x ≥ 0 satisfies ηi(x) ≥ α > 0 for all i = 1, . . . , r + 1, then

x ≥
∑
z∈Z

λzz

for some multipliers λz ∈ R≥0 satisfying
∑
λz = α.

Proof. The proof is by induction on the number of nonzero coordinates of the vector x. Since
α > 0, there is some index t such that xt is the smallest nonzero coordinate of x. As ηi(x) > 0
for all i, there must exist z∗ ∈ Z such that z∗t = 1 and xtz

∗ ≤ x. Then x∗ = x− xtz∗ ≥ 0. If
xt ≥ α, the claimed result holds because

x ≥ αz∗.

If xt < α, then ηi(x
∗) ≥ α−xt > 0 for all i, and x∗ has one more zero coordinate than x. By

induction we have x∗ ≥
∑

z∈Z λ
∗
zz for some multipliers λ∗z ∈ R≥0 satisfying

∑
λ∗z = α − xt.

Now the claimed result follows by choosing

λz =

{
λ∗z if z 6= z∗

λ∗z + xt if z = z∗
.

We will henceforth use ηi to denote ηi(x) when there is no ambiguity.

Lemma 9. For x ∈ Q(Ωr) and i ∈ {1, . . . , r + 1},

η1 + · · ·+ ηr+1 ≥ ηi −max(ηi, 1)−max(ηπ−1(i), 1) +
r+1∑
k=1

max(ηk, 1).

Proof. From (1), we see that
A`⊗jx = η` + xπj(`)⊗j. (4)

Consider the row πi(r − j)⊗ j of Ωr for j ∈ {1, . . . , r − 1}. By (4) and x ∈ Q(Ωr),

Aπi(r−j)⊗jx = ηπi(r−j) + xπi(r)⊗j ≥ max(ηπi(r−j), 1).

Summing over all j gives

ηπi(r) + ηπi(r−1) + · · ·+ ηπi(1) ≥ max(ηπi(r−1), 1) + · · ·+ max(ηπi(1), 1).

As πi(r+ 1) = i and πi(r) = πr(i) = π−1(i), the LHS does not include ηi, and the RHS does
not include max(ηi, 1) or max(ηπ−1(i), 1). Adding ηi to both sides of the inequality, we get
the claim.

We will now use the previous two lemmas to prove Theorem 7.
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Proof of Theorem 7. Let x be an extreme point of Q(Ωr) not equal to (1/r, . . . , 1/r). We
split the problem into two cases. We show that if all ηi ≥ 1, then x must be an element of
the set Z. If there exists i ∈ {1, . . . , r + 1} such that ηi < 1, then we prove x = yi⊗j for
some j ∈ {1, . . . , r− 1}, where yi⊗j is defined in (2). Since x must be integral in both cases,
(1/r, . . . , 1/r) is the only fractional extreme point.

Case 1. Suppose ηi ≥ 1 for all i.

By a direct application of Lemma 8, we have for some multipliers λz ∈ R≥0,

x ≥
∑
z∈Z

λzz,
∑

λz = 1.

Since x is an extreme point and
∑
λzz is a convex combination of points in Z, we must have

x ∈ Z.

Case 2. Suppose min ηi < 1.

We will prove that in this case x ∈ {yi⊗j}. Let k be such that ηk = min ηi < 1. We first
show that we may assume k = 1. Define the n × n permutation matrix M = P k−1 ⊗ Ir−1.
Observe that because Ir+1, P

i are conjugation invariant under P k−1,

MΩrM
−1 = (P k−1 ⊗ Ir−1)Ωr(P

−k+1 ⊗ Ir−1) = Ωr.

Note that since M is a permutation matrix, Mx is an extreme point of

M(Q(Ωr)) = {Mx′ | Ωrx
′ = ΩrM

−1Mx′ ≥ 1, x′ ≥ 0}
= {x′′ | ΩrM

−1x′′ ≥ 1, x′′ ≥ 0}
= Q(MΩrM

−1) = Q(Ωr).

Now if Mx = yi⊗j for some i ∈ {1, . . . , r + 1}, j ∈ {1, . . . , r − 1}, then

x = M−1yi⊗j = (P−k+1 ⊗ Ir−1)yi⊗j = yπ
k−1(i)⊗j.

Since η`(Mx) = η`((P
k−1 ⊗ Ir−1)x) = ηπk−1(`)(x) for all `, we may replace x with Mx and

assume that η1 = min η`.

Claim 1. There exists j ∈ {1, . . . , r − 1} such that x(r+1)⊗j > 0 and Aπ−j(r+1)⊗jx > 1.

Suppose for the sake of contradiction that for each j ∈ {1, . . . , r − 1}, either

x(r+1)⊗j = 0 or Aπ−j(r+1)⊗jx ≤ 1.

If x(r+1)⊗j = 0, then since x ∈ Q(Ωr), we have from (4) that

Aπ−j(r+1)⊗jx = ηπ−j(r+1) ≥ 1 =⇒ Aπ−j(r+1)⊗jx = max(ηπ−j(r+1), 1).

We deduce that for every j,

ηπ−j(r+1) + x(r+1)⊗j = Aπ−j(r+1)⊗jx ≤ max(ηπ−j(r+1), 1).
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Summing over all j and adding η1, we conclude that

η1 + · · ·+ ηr+1 = η1 +
r−1∑
j=1

Aπ−j(r+1)⊗jx ≤ η1 +
r∑

k=2

max(ηk, 1). (5)

We prove that η1 = ηi for all i ∈ {1, . . . , r + 1} by induction on i. The claim is clear for
i = 1. Take i > 1 and suppose η1 = ηi−1 < 1. Then combining Lemma 9 and (5),

η1 +
r∑

k=2

max(ηk, 1) ≥
r+1∑
k=1

ηk ≥ ηi −max(ηi, 1)−max(ηπ−1(i), 1) +
r+1∑
k=1

max(ηk, 1).

Since π−1(i) = i − 1, we observe that max(η1, 1) − max(ηπ−1(i), 1) = 1 − 1 = 0. Canceling
terms, we have

η1 ≥ ηi −max(ηi, 1) + max(ηr+1, 1) ≥ ηi + 1−max(ηi, 1) ≥ min(ηi, 1).

Since η1 < 1 and we chose η1 to be minimal, we have η1 = ηi. This concludes the inductive
step. Therefore

η1 = · · · = ηr+1 < 1. (6)

It is a fact of convexity theory that if x ∈ Rn is an extreme point of the polyhedron
defined by the system of inequalities Ωrx

′ ≥ 1, x′ ≥ 0, then x must satisfy at least n of
the inequalities with equalities [12]. From Lemma 4, we know that there exists B such that
ΩrB

T = Jn + In. Since Ωr has r ones in each row,

Ωr(B
T − 1

r
Jn) = In,

so Ωr is invertible. Thus the point (1/r, . . . , 1/r) is the unique solution to Ωrx = 1. Therefore
x 6= (1/r, . . . , 1/r) must satisfy xi⊗j = 0 for some i, j. As

Aπ−j(i)⊗jx = ηπ−j(i) + xi⊗j = ηπ−j(i) ≥ 1,

we have a contradiction of (6). This proves the claim.
Take j ∈ {1, . . . , r − 1} from Claim 1 such that x(r+1)⊗j > 0 and Aπ−j(r+1)⊗jx > 1. We

show that there exists ε0 ∈ R>0 such that ε0y
1⊗j ≤ x (i.e., x is nonzero in every coordinate

where y1⊗j is nonzero). For ` ∈ {1, . . . , r − 1},

A1⊗`x = η1 + x(`+1)⊗` ≥ 1

implies x(`+1)⊗` ≥ 1− η1 > 0. From the definition of y1⊗j, it suffices to take

ε0 = min(x2⊗1, x3⊗2, . . . , xr⊗(r−1), x(r+1)⊗j) > 0.

We claim that x must in fact be equal to y1⊗j since x is an extreme point. Let y = y1⊗j.
For any 0 < ε < 1, we have (1− ε)x+ εy ∈ Q(Ωr) by convexity from x, y ∈ Q(Ωr). For any
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0 < ε < ε0, we have (1+ ε)x− εy ≥ x− εy ≥ 0. For any row k⊗ ` not equal to π−j(r+ 1)⊗ j,
we have

Ak⊗`((1 + ε)x− εy) = (1 + ε)Ak⊗`x− ε ≥ 1.

If we additionally assume 0 < ε < (Aπ−j(r+1)⊗jx− 1)/2, then

Aπ−j(r+1)⊗j((1 + ε)x− εy) = (1 + ε)Aπ−j(r+1)⊗jx− 2ε ≥ Aπ−j(r+1)⊗jx− 2ε ≥ 1.

We conclude that for any 0 < ε < min(1, ε0, (Aπ−j(r+1)⊗jx− 1)/2), the two points

(1∓ ε)x± εy ∈ Q(Ωr).

Since x is an extreme point, this implies (1 − ε)x + εy = (1 + ε)x − εy, which is equivalent
to x = y.

Therefore the only fractional extreme point of Q(Ωr) is the point (1/r, . . . , 1/r).

Note that in the course of proving Theorem 7, we showed that the 0, 1 extreme points
of Q(Ωr) are a subset of Z ∪ {yi⊗j}. Recall that the blocker b(Ωr) is the matrix with rows
corresponding to the minimal 0, 1 vectors xT such that x ∈ Q(Ωr), or equivalently the 0, 1
extreme points of Q(Ωr) [1, Remark 1.16]. There are (r + 1)(r − 1) = r2 − 1 distinct yi⊗j.
The set Z has (r − 1)r+1 elements, but exactly (r − 1) distinct vectors in Z dominate each
yi⊗j. Therefore b(Ωr) has (r− 1)r+1− (r− 2)(r2− 1) rows, and they are exactly the minimal
vectors in Z ∪ {yi⊗j}.

Lemma 6 shows that Theorem 7 implies Theorem 3. Since Ωr is a square matrix, The-
orem 1 implies that it is equal to its core. Rows 1, . . . , r − 1 of Ωr have r − 1 ones in the
same r − 1 columns, and the number of shared columns is invariant under isomorphism, so
Ωr is not isomorphic to Cr

n. Lastly Ωr has r ones in every row, so it cannot be isomorphic
to Js. Thus we have a new infinite family of mni matrices and cores, and Conjecture 2 is
disproved. Theorem 3 also shows that the core of an mni matrix can contain exactly r ones
in every row and column, for any r ≥ 3.

5. Open problems

The complete classification of mni matrices is still an open problem. In fact, it is unknown
which square Lehman matrices are cores of mni matrices. We have shown that there are
more possible cores than previously proposed in Conjecture 2. Matrices other than those in
the conjecture and the newly constructed Ωr may, however, still be cores of mni matrices.
Many Lehman matrices are not mni, but we were unable to prove that there exists a Lehman
matrix with d = 1 that is not the core of an mni matrix. We believe that such a matrix
should exist, and such an example would be very useful.
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