SMOOTH NON-ADMISSIBLE ASYMPTOTICS FOR $SL_2(\mathbb{R})$

JONATHAN WANG

ABSTRACT. The goal of this note is to demonstrate that a notion of smooth asymptotics map exists without K-finiteness assumptions for $SL_2(\mathbb{R})$ using explicit known formulas for intertwining operators. This suggests that a theory parallel to Bernstein's *p*-adic theory, further developed by Bezrukavnikov–Kazhdan [BK], should exist for real groups as well.

Preliminaries

Let $G = \mathrm{SL}_2(\mathbb{R})$. Let B denote the minimal parabolic of upper triangular matrices. We have the Langlands decomposition $B = NAM^1$ where N is the unipotent radical of B, we identify A with $\mathbb{R}^{\times}_+ = (0, \infty)$ via $a \mapsto ({}^a{}_{a^{-1}})$ and $M^1 = \{\pm 1\}$. We have $M = AM^1 = \mathbb{R}^{\times}$ is a Levi subgroup of B. Let $K = \mathrm{SO}(2)$ denote the maximal compact subgroup of G.

Identify $N^-\backslash G$ with $V \backslash 0$ where $V = \mathbb{R}^2$ and $N\backslash G$ with $V^* \backslash 0$. Under this identification $\binom{a}{a^{-1}} \in N^-\backslash G$ identifies with $\binom{a^{-1}}{a}e_2 = ae_2$ and $\binom{a}{a^{-1}} \in N\backslash G$ identifies with $e_2^*\binom{a}{a^{-1}} = a^{-1}e_2^*$.

So if we want to define $\|\bar{n}amk\| = \|a\|$ for $\bar{n}amk \in N^{-}\backslash G$, this identifies with the usual norm $\|v\|$ on $v \in V \setminus 0$. On the other hand $\|namk\| = \|a\|$ for $namk \in N \backslash G$ corresponds to $\|\xi\|^{-1}$ on $\xi \in V^* \setminus 0$.

0.1. Let $X = M^{diag} \setminus (N^- \setminus G \times N \setminus G)$, which identifies with the space of rank one 2×2 matrices. Then the main result, intended to parallel [BK, Proposition 7.1, Theorem 7.6], can be interpreted as:

Theorem 0.1.1 (cf. Theorem 3.4.3). There exists a G-equivariant map

$$\operatorname{Asymp}: \mathscr{S}(G) \to \widehat{C}_+(X)$$

that recovers asymptotics of matrix coefficients, where $\mathscr{S}(G)$ is Casselman's Schwartz space and $\widehat{C}_+(X)$ is some "completed" space of formal series.

1. The spaces $\mathscr{S}^{\mathrm{umg}}_+$

We have the algebraic Schwartz space $\mathscr{S}(N^-\backslash G)$ which roughly consists of functions f on $N^-\backslash G = V \setminus 0$ such that all derivatives are rapidly decreasing as $||v|| \to 0$ and ∞ . This is a Fréchet space and SF-module over $\mathscr{S}(M)$ and $\mathscr{S}(G)$ (cf. [CH, 4.3, 4.4]).

In our case, we have $N^- \backslash G = A \times K = A \times S^1$. We can consider $f \in C^{\infty}(N^- \backslash G)$ as a function $f(a, \theta)$ where a = ||v|| and θ is the angular variable. We will also use polar coordinates to consider a function $f \in C^{\infty}(N \backslash G) = C^{\infty}(V^* \backslash 0)$ as a function $f(a, \theta)$ where $a = ||\xi||$. We caution that the A-action by left translation corresponds to scaling by a on $N^- \backslash G = V \backslash 0$ but to scaling by a^{-1} on $N \backslash G = V^* \backslash 0$.

In these coordinates, the semi-norms on $\mathscr{S}(N^-\backslash G)$ are of the form

$$||f||_{\alpha,\beta,r} := \sup_{a,\theta} |(a\partial_a)^{\alpha} \partial_{\theta}^{\beta} f| \cdot a^r$$

where α, β are non-negative integers and $r \in \mathbb{R}$.

We now introduce the space $\mathscr{S}^r_+(N^-\backslash G)$ for $r \in \mathbb{R}$. This space consists of all smooth functions $f: N^-\backslash G = V \setminus 0 \to \mathbb{C}$ such that

$$||f||_{+,\alpha,\beta,R} := \sup_{a \ge 1,\theta} |(a\partial_a)^{\alpha} \partial_{\theta}^{\beta} f| \cdot a^R < \infty$$

for all $R \in \mathbb{R}$ and all $\alpha, \beta \ge 0$, and

$$\|f\|_{\alpha,\beta,r} < \infty$$

for our fixed number r and all $\alpha, \beta \ge 0$. Then $\mathscr{S}^r_+(N^- \setminus G)$ becomes a Fréchet space with respect to these semi-norms.

We made the definition so that $U\mathfrak{a} = \mathbb{C}[a\partial_a]$ acts on $\mathscr{S}^r_+(N^-\backslash G)$ by left translations. One can check that ∂_a sends $\mathscr{S}^r_+(N^-\backslash G) \to \mathscr{S}^{r+1}_+(N^-\backslash G)$.

Define the LF-space

$$\mathscr{S}^{\mathrm{umg}}_{+}(N^{-}\backslash G) = \operatorname{colim}_{r \in \mathbb{R}_{+}} \mathscr{S}^{r}_{+}(N^{-}\backslash G)$$

This is the space of smooth functions f such that all derivatives are rapidly decreasing as $||v|| \to \infty$ and f has uniform moderate growth¹ as $||v|| \to 0$.

Analogously define $\mathscr{S}^{\text{umg}}_{-}(N^{-}\backslash G)$ with the two directions flipped.

We also define the spaces $\mathscr{S}_{\pm}^{\text{umg}}(N \setminus G)$ using these definitions where ||v|| is replaced by $||\xi||$ for $\xi \in V^* \setminus 0 = N \setminus G$.

2. Intertwining operator R

We have the standard intertwining operator

$$R = R_B : C_c^{\infty}(N^- \backslash G) \to C^{\infty}(N \backslash G)$$

defined by $Rf(g) = \int_N f(ng) dn$. Recall that with our identifications this equals

$$Rf(\xi) = \int_{\langle \xi, v \rangle = 1} f(v) d\mu_{\xi}.$$

Evidently R is right G-equivariant and hence $U\mathfrak{g}$ -equivariant.

We have that R is almost equivariant with respect to the left M-action in the sense that

$$\check{\alpha}(a) \cdot Rf = a^2 R(\check{\alpha}(a) \cdot f),$$

where $\check{\alpha}(a) \cdot f(g) := f(\check{\alpha}(a)g)$. Note that $\check{\alpha}(a)$ acts on both $N^- \backslash G = V \backslash 0$ by the scalar a but on $N \backslash G = V^* \backslash 0$ by the scalar a^{-1} . We deduce that in polar coordinates,

(2.1)
$$-a\partial_a(Rf) = 2Rf + R(a\partial_a f)$$

Lemma 2.0.1. The operator R extends to a continuous operator $\mathscr{S}^{\mathrm{umg}}_+(N^{-}\backslash G) \to \mathscr{S}^{-}_-(N\backslash G)$. More specifically, R sends $\mathscr{S}^{r}_+(N^{-}\backslash G) \to \mathscr{S}^{-r+2}_-(N\backslash G)$.

Proof. Using the relation (2.1) and induction, it suffices to check the bounds on semi-norms for $\alpha = \beta = 0$. For the purposes of bounding semi-norms we can replace f by the radial function

$$F(a) = \sup_{\|x\|=a} |f(x)|.$$

If $f \in \mathscr{S}^r_+(N^- \setminus G)$ then $F(a) = O(a^{-r})$ as $a \to 0$ and F(a) is rapidly decreasing as $a \to \infty$. Then

$$|Rf(\xi)| \le ||\xi||^{-1} \int_{\mathbb{R}} F(\sqrt{||\xi||^{-2} + x^2}) dx.$$

¹Here uniform is with respect to $U\mathfrak{a}$. I am not sure this definition is natural.

Since $F(\sqrt{\|\xi\|^{-2} + x^2})$ is rapidly decreasing as $x \to \infty$, the integral converges. If $\|\xi\| \ge 1$ then $\int_0^\infty F(\sqrt{\|\xi\|^{-2} + x^2}) dx$ is bounded by a constant times

$$\int_{0}^{1} (\|\xi\|^{-2} + x^2)^{-r/2} dx = \|\xi\|^{r-1} \int_{0}^{\|\xi\|^{-1}} (1 + x^2)^{-r/2} dx \le \|\xi\|^{r-1} \int_{0}^{1} (1 + x^2)^{-r/2} dx$$

where $\int_0^1 (1+x^2)^{-r/2} dx$ is just a finite number. This shows that $|Rf(\xi)| = O(||\xi||^{r-2})$ as $||\xi|| \to \infty$.

If $\|\xi\| \leq 1$ then $\int_0^\infty F(\sqrt{\|\xi\|^{-2} + x^2}) dx$ is dominated by a constant multiple of

$$\int_{1}^{\infty} (\|\xi\|^{-2} + x^2)^{-R/2} dx = \|\xi\|^R \int_{0}^{\infty} (1 + (\|\xi\|x)^2)^{-R/2} dx \le \|\xi\|^R \int_{0}^{\infty} (1 + x^2)^{-R/2} dx$$

for all R. This shows that $Rf \in \mathscr{S}_{-}^{-r+2}(N \setminus G)$.

A careful check of the constant multipliers shows continuity with respect to the semi-norms.

2.1. Decomposition into *K***-types.** Since K = SO(2), the *K*-types are 1-dimensional and indexed by \mathbb{Z} .

For any $f \in \mathscr{S}^{\mathrm{umg}}_+(N^-\backslash G)$ we have a Fourier series (i.e., infinite K-type decomposition)

$$f(a,\theta) = \sum_{n \in \mathbb{Z}} f_n(a) e^{in\theta}$$

where $f_n(a)$ is a function on $A = \mathbb{R}^{\times}_+$ which is uniform moderate growth at 0 and all derivatives rapidly decreasing at ∞ . The sum (and all its derivatives) converges absolutely since

$$(in)^{\beta}f_{n} = \frac{1}{2\pi} \int_{0}^{2\pi} f(a,\theta) \cdot (-\partial_{\theta})^{\beta} (e^{-in\theta}) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \partial_{\theta}^{\beta} f \cdot e^{-in\theta} d\theta$$

implies that

$$|n^{\beta}f_{n}(a)| \leq \sup_{\theta} |\partial_{\theta}^{\beta}f(a,\theta)|$$

for all $\beta \in \mathbb{N}$. Using the same reasoning (e.g., for $\beta + 2$ above), we see that

$$(2.2) \quad \|f\|_{\alpha,\beta,r} = \sup_{a,\theta} |(a\partial_a)^{\alpha} \partial_{\theta}^{\beta} f| \cdot a^r \le \sum_{n \in \mathbb{Z}} |n|^{\beta} \sup_{a} \{ |(a\partial_a)^{\alpha} f_n| \cdot a^r \} \le 2\zeta(2) \|f\|_{\alpha,\beta+2,r} < \infty$$

when $f \in \mathscr{S}^{r}_{+}(N^{-}\backslash G)$. Similarly, we have

$$\|f\|_{+,\alpha,\beta,R} \le \sum_{n \in \mathbb{Z}} n^{\beta} \sup_{a \ge 1} \{ |(a\partial_a)^{\alpha} f_n| \cdot a^R \} \le 2\zeta(2) \|f\|_{+,\alpha,\beta+2,r} < \infty$$

and analogous bounds for the semi-norms on $\mathscr{S}^{\mathrm{umg}}_{\pm}(N^{\pm}\backslash G)$.

2.2. Mellin transform and c-function. For a fixed K-type $n \in \mathbb{Z}$, consider $f_n(a)e^{in\theta} \in \mathscr{S}^r_+(N^-\backslash G)$. Then we can define the Mellin transform of f_n by

$$\hat{f}_n(z) = \int_0^\infty f_n(a) a^{z-1} da$$

where the RHS is absolutely convergent for $z \in \mathbb{C}$ with $\operatorname{Re}(z) > r$. Mellin inversion theorem says that

$$f_n(a) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} a^{-c-iy} \hat{f}_n(c+iy) dy$$

for c > r. Note that for c > r, we have $f_n(a)a^c \in L^2(A, \frac{da}{a})$.

 \square

JONATHAN WANG

We know how the intertwining operator acts on principal series, cf. [W, Lemma 7.17]. If we abuse notation, this says that

(2.3)
$$R(a^{-z}e^{in\theta}) = c_n(z)a^{z-2}e^{in\theta}$$

where R is defined by the same integral as before, which converges absolutely for $\operatorname{Re}(z) > 1$, and we have a formula 1/2n(x-1)n(x)

(2.4)
$$c_n(z) = \frac{\pi^{1/2} \Gamma(\frac{z-1}{2}) \Gamma(\frac{z}{2})}{\Gamma(\frac{z+n}{2}) \Gamma(\frac{z-n}{2})}.$$

Since all integrals converge absolutely, by Fubini and Mellin inversion we have

$$R(f_n(a)e^{in\theta}) = \frac{1}{2\pi i} \int_{\operatorname{Re}(z)=c} \hat{f}_n(z)c_n(z)a^{z-2}dz \cdot e^{in\theta}$$

If we return to a general $f \in \mathscr{S}^r_+(N^-\backslash G)$ then we can express Rf as the sum of the RHS above over all $n \in \mathbb{Z}$ since the Fourier series for Rf is absolutely convergent.

3. Description of the inverse

3.1. The *K*-finite setting. First we fix a *K*-type $n \in \mathbb{Z}$ and take $f_n(a)e^{in\theta} \in \mathscr{S}_{-}^{-r}(N \setminus G)$. Recall that this implies f_n is rapidly decreasing as $a \to 0$ and $f_n(a) = O(a^r)$ as $a \to \infty$.

Then the Mellin transform $\hat{f}_n(z)$ is absolutely convergent for $\operatorname{Re}(z) < -r$. Note that for c < -r, we have $f_n(a)a^c \in L^2(A, \frac{da}{a})$ and consequently $\hat{f}_n(z) \in L^2(c+i\mathbb{R})$.

Motivated by (2.3), we want to define

(3.1)
$$R'(f_n(a)e^{in\theta}) = \frac{1}{2\pi i} \int_{\operatorname{Re}(z)=c} \hat{f}_n(z)c_n(-z+2)^{-1}a^{z-2}dz \cdot e^{in\theta}$$

for $c \ll 0$.

Remark 3.1.1. The difference between this definition and the one in [CH] is that in *loc cit.* they integrate over $\operatorname{Re}(z) = 1$. This is the same distinction as between smooth and L^2 asymptotics in the non-Archimedean case.

Now we use the explicit formula (2.4) for c_n to make estimates. A consequence of Stirling's approximation is that

$$\lim_{|z| \to \infty} \frac{\Gamma(z+a)}{\Gamma(z)} z^{-a} = 1, \quad |\arg z| \le \pi - \varepsilon$$

for any $a \in \mathbb{C}$ and $\varepsilon > 0$. Using this, we get the asymptotic approximation

(3.2)
$$c_n(z) \sim \pi^{1/2} (\frac{z}{2})^{-1/2}$$

 $\begin{array}{l} \text{if } \arg(z-|n|) \leq \pi-\varepsilon \\ \text{We deduce that } c_n(-z+2)^{-1} \sim \pi^{-1/2}(\frac{-z}{2})^{1/2} \text{ in any vertical line as } \operatorname{Im}(z) \to \infty. \end{array}$

Remark 3.1.2. The key observation to note is that this approximation is independent of the K-type n. This is a general phenomenon for any G, cf. [VW, Lemma 3.5].

Lemma 3.1.3. The integral

$$R'_{n,c}(f_n)(a) := \frac{1}{2\pi i} \int_{\operatorname{Re}(z)=c} \hat{f}_n(z) c_n(-z+2)^{-1} a^{z-2} dz$$

converges absolutely if $f_n e^{in\theta} \in \mathscr{S}^{-r}_{-}(N \setminus G)$ and c < -r and $c \notin -n+2+\mathbb{Z}_+$. More specifically, we have

(3.3)
$$|R'_{n,c}(f_n)(a)| \le \tilde{B}_c(f_n)a^{c-2}$$

4

where $\tilde{B}_c(f_n)$ is a linear combination of semi-norms on f_n with positive coefficients depending on c but not on n.

Proof. Rewrite

$$\int_{\operatorname{Re}(z)=c} |\hat{f}_n(z)c_n(-z+2)^{-1}| dz = \int_{\operatorname{Re}(z)=c} \frac{|c_n(-z+2)|^{-1}}{|(z+1)z|} \cdot |(z+1)z\hat{f}_n(z)| dz$$

The (z+1)z in the denominator is to ensure that $\frac{|c_n(-z+2)|^{-1}}{|(z+1)z|} \in L^2(c+i\mathbb{R})$. Integration by parts implies that $(\partial_a^2 f)^{\wedge}(z+2) = (z+1)z\hat{f}(z)$.

If $f_n \in \mathscr{S}_{-}^{-r}(N \setminus G)$, then $\partial_a^2 f_n \in \mathscr{S}_{-}^{-r+2}(N \setminus G)$. Thus $(\partial_a^2 f_n)^{\wedge}(z+2)$ converges absolutely for $\operatorname{Re}(z) < -r$ and $(\partial_a^2 f_n)^{\wedge}(z+2) \in L^2(c+i\mathbb{R})$. Now the Cauchy–Schwartz inequality gives the bound

$$\int_{\operatorname{Re}(z)=c} |\hat{f}_n(z)c_n(-z+2)^{-1}| dz \le \left\| \frac{c_n(-z+2)^{-1}}{(z+1)z} \right\|_{L^2(c+i\mathbb{R})} \cdot \|(\partial_a^2 f_n)^\wedge\|_{L^2(c+2+i\mathbb{R})}.$$

Here $\|\frac{c_n(-z+2)^{-1}}{(z+1)z}\|_{L^2(c+i\mathbb{R})}$ can be bounded above by a constant B_c independent of n but dependent on c. By Plancherel theorem,

$$\|(\partial_a^2 f_n)^{\wedge}\|_{L^2(c+2+i\mathbb{R})}^2 = \int_A |\partial_a^2 f_n(a)a^{c+2}|^2 \frac{da}{a}.$$

Since $f_n \in \mathscr{S}_{-}^{-r}(N \setminus G)$, the RHS is bounded above by

$$(\|f_n\|_{1,0,-r} + \|f_n\|_{2,0,-r})^2 \int_1^\infty a^{2(c+r)-1} da + (\|f_n\|_{-,1,0,R} + \|f_n\|_{-,2,0,R})^2 \int_0^1 a^{2(c-R)-1} da < \infty,$$

where $R \in \mathbb{R}$ can be taken arbitrarily negative.

Lemma 3.1.3 shows that the integral defining $R'_{n,c}$ converges absolutely on all derivatives of $f_n(a)$ as well, so the dominated convergence theorem implies that $R'(f_n(a)e^{in\theta})$ is a smooth function on $N^-\backslash G$. So we get an operator

$$R'_{n,c}:\mathscr{S}_{-}^{-r}(N\backslash G)_n\to C^{\infty}(N^-\backslash G)_n,$$

where the subscript n denotes the K-isotypic component corresponding to $n \in \mathbb{Z}$. By dominated convergence theorem, we see that

$$a\partial_a R'(f_n(a)e^{in\theta})) = \frac{1}{2\pi i} \int_{\mathrm{Re}(z)=c} \hat{f}_n(z)(z-2)c_n(-z+2)^{-1}a^{z-2}dz \cdot e^{in\theta}$$

where $(z-2)\hat{f}_n(z) = -(a\partial_a f_n)^{\wedge}(z) - 2\hat{f}_n(z)$. We deduce that

(3.4)
$$a\partial_a R'(f_n e^{in\theta}) = -R'(a\partial_a f_n e^{in\theta}) - 2R'(f_n e^{in\theta}).$$

We can therefore inductively get similar bounds as (3.3) for all the derivatives $|(a\partial_a)^{\alpha}R'(f_ne^{in\theta})|$.

By consideration of the poles of $c_n(z)^{-1}$, one observes that $R'_{n,c}$ is independent of c as long as $c < \min\{-|n|+2, -r\}$ by contour shift.

Corollary 3.1.4. We have a continuous operator

$$R' = R'_{n,c} : \mathscr{S}_{-}^{-r}(N \backslash G)_n \to \mathscr{S}_{+}^{\max\{r+2,|n|\}+\varepsilon}(N^- \backslash G)_n$$

independent of $c < \min\{-|n|+2, -r\}$, where $\varepsilon > 0$ is arbitrary.

Proof. For such a c, the bound (3.3) implies that all \mathfrak{a} -derivatives of $R'_{n,c}(f_n)$ grow like $O(a^{c-2})$ as $a \to 0$. Since we can move c arbitrarily far to the left, we also see that $R'_{n,c}(f_n) = O(a^{-R})$ as $a \to \infty$ for all $R \in \mathbb{R}$.

We can easily extend R' to an operator

$$R':\mathscr{S}^{\mathrm{umg}}_{-}(N\backslash G)_{(K)}\to\mathscr{S}^{\mathrm{umg}}_{+}(N^{-}\backslash G)_{(K)}$$

where the subscript (K) denotes the K-finite functions. We have essentially constructed R' so that the following is true:

Lemma 3.1.5. Let $f_n e^{in\theta} \in \mathscr{S}^{umg}_{-}(N \setminus G)_n$. Then

(3.5)
$$(R'(f_n e^{in\theta}))^{\wedge}(z) = \hat{f}_n(-z+2)c_n(z)^{-1}$$

for $\operatorname{Re}(z) \gg 0$.

Proof. Since $R'(f_n e^{in\theta})$ is defined by the absolutely convergent integral (3.1), which is essentially an inverse Mellin transform, the claim follows by the usual (L^1) Fourier inversion theorem.

By Mellin inversion theorem we get the following corollary:

Corollary 3.1.6. The operator

$$R:\mathscr{S}^{\mathrm{umg}}_+(N^-\backslash G)_{(K)}\to\mathscr{S}^{\mathrm{umg}}_-(N\backslash G)_{(K)}$$

is a topological isomorphism with inverse given by R'.

3.2. The problem. The naive attempt would be to extend R' to an operator $\mathscr{S}^{\text{umg}}_{-}(N \setminus G) \to \mathscr{S}^{\text{umg}}_{+}(N^{-} \setminus G)$ without K-finiteness by taking Fourier series. Unfortunately, this has a bug: in order to make R' well-defined, we had to shift move c to the left so that c < -|n| + 2. If we sum over all n, we would need to move c infinitely far to the left, so there is vertical line one can integrate over to define R'.

3.3. A theorem of Schwartz. Without *K*-finiteness, we do have the following inversion theorem, due to Schwartz himself: we have an embedding

$$\mathscr{S}(\mathbb{R}^2) \hookrightarrow \mathscr{S}^{\mathrm{umg}}_+(N^- \backslash G).$$

We also have an embedding

$$\mathscr{S}(S^1 \times \mathbb{R}) \hookrightarrow \mathscr{S}^{\mathrm{umg}}_{-}(N \backslash G)$$

where $F \in \mathscr{S}(S^1 \times \mathbb{R})$ is sent to $f(a\omega) = a^{-1}F(\omega, a^{-1})$ for $\omega = (\omega_1, \omega_2) \in S^1$. Let $\mathscr{S}_H(S^1 \times \mathbb{R})$ denote the subspace of functions F such that

$$\int_{\mathbb{R}} F(\omega, a) a^m da = \int_{\mathbb{R}} f(a\omega) a^{-m-1} da =: \hat{f}(-m)(\omega)$$

is a homogeneous polynomial in ω_1, ω_2 of degree m for each $m \in \mathbb{Z}_+$. Note that this implies $\hat{f}(-m) \in \mathscr{S}(K)$ has K-type $\pm m$.

Theorem 3.3.1 (Schwartz, cf. [H, Theorem 2.4]). The operator R defines an isomorphism

$$\mathscr{S}(\mathbb{R}^2) \xrightarrow{\sim} \mathscr{S}_H(S^1 \times \mathbb{R}).$$

It is also perhaps worth pointing out that the inverse is defined by first taking a 1-dimensional Fourier transform ² with respect to $\|\xi\|$ and then taking 2-dimensional Fourier transform to get a function in $\mathscr{S}(\mathbb{R}^2)$.

6

²This Fourier transform is really a *multiplicative* convolution $*r^{-1}e^{-ir\|\xi\|}dr$ of the function in $\mathscr{S}_{-}^{umg}(N\backslash G)$, which Ngo would call a kind of Hankel transform

3.4. Removing K-finiteness. Let us continue our approach. If we have $f_n e^{in\theta} \in \mathscr{S}_{-}^{-r}(N \setminus G)_n$, we can use residue theorem to shift the contour, picking up residues along the way: if we fix a small $\varepsilon > 0$, then

(3.6)
$$R'_{n,c}(f_n) = R'_{n,-r-\varepsilon}(f_n) - \sum_{m>r,m\in\mathbb{Z}} \hat{f}_n(-m) \left(\operatorname{Res}_{z=m+2} c_n(z)^{-1} \right) \cdot a^{-m-2}$$

where $c_n(z)^{-1}$ only has a pole at m+2 if $m \leq n-2$, so the sum is finite in the K-finite setting (but will become infinite if we remove K-finiteness).

As a first step, we can use Lemma 3.1.3 to take Fourier series of $R'_{n,-r-\varepsilon}$ to get an operator on all of $\mathscr{S}^{-r}_{-}(N \setminus G)$.

Theorem 3.4.1. Let $f \in \mathscr{S}_{-}^{-r}(N \setminus G)$. For a fixed $\varepsilon > 0$, the sum

$$R'_{-r-\varepsilon}(f)(a,\theta) := \sum_{n \in \mathbb{Z}} R'_{n,-r-\varepsilon}(f_n)(a)e^{in\theta}$$

converges absolutely and defines an operator

$$R'_{-r-\varepsilon}:\mathscr{S}_{-}^{-r}(N\backslash G)\to C^{\infty}(N^{-}\backslash G)$$

with the property that $||R'f||_{\alpha,\beta,r+2+\varepsilon} < \infty$ for all α,β , and $R'_{-r-\varepsilon}$ is continuous with respect to this semi-norm.

Proof. For $f \in \mathscr{S}^{-r}(N \setminus G)$ not necessarily K-finite, we have the Fourier series $f(a, \theta) = \sum_{n \in \mathbb{Z}} f_n(a) e^{in\theta}$. Let $r' = r + 2 + \varepsilon$. Applying (2.2), we have the bound

$$\|R'_{-r-\varepsilon}f\|_{0,\beta,r'} \le \sum_{n\in\mathbb{Z}} |n|^{\beta} \sup_{a} \{|R'(f_n(a)e^{in\theta})|a^{r'}\}$$

Using (3.3), the RHS is bounded by

$$\sum_{n\in\mathbb{Z}} |n|^{\beta} \tilde{B}_c(f_n)$$

Recall that $\dot{B}_c(f_n)$ is a linear combination of semi-norms $||f_n||_{\alpha,0,r'}$ where the coefficients do not depend on n. The second inequality in (2.2) implies that

$$\sum_{n \in \mathbb{Z}} |n|^{\beta} ||f_n||_{\alpha, 0, r'} \le 2\zeta(2) \cdot ||f||_{\alpha, \beta+2, r'}.$$

Therefore we conclude that

$$\|R'_{-r-\varepsilon}f\|_{0,\beta,r'} \le \tilde{B}_c(f) < \infty$$

where $\tilde{B}_c(f)$ is a positive linear combination of semi-norms $||f||_{\alpha,\beta,r'}$. Using (3.4), we can inductively get similar bounds for $||R'_{-r-\varepsilon}f||_{\alpha,\beta,r'}$ for all $\alpha,\beta \geq 0$. The exact same argument gives continuous bounds on $||R'_{-r-\varepsilon}f||_{+\alpha,\beta,R}$ for any $R \in \mathbb{R}$. This proves the theorem. \Box

Now for fixed $m \in \mathbb{Z}$ let us look at the series

(3.7)
$$R_m^{\sharp}(f)(\theta) := \sum_{n \in \mathbb{Z}} \hat{f}_n(-m) e^{in\theta} \left(\operatorname{Res}_{z=m+2} c_n(z)^{-1} \right)$$

Assuming m > -2, from (2.4) we get

$$\operatorname{Res}_{z=m+2} c_n(z)^{-1} = \frac{-(-1)^{\frac{n-m}{2}} 2^{m+1} (\frac{m+n}{2})!}{\pi (\frac{n-m}{2}-1)! m!} \quad \text{if } n \in m+2+2\mathbb{Z}_+$$

and vanishes otherwise. By Stirling's approximation again, this has magnitude asymptotically equal to $\frac{1}{\pi \cdot m!} n^{m+1}$ as $|n| \to \infty$.

JONATHAN WANG

For $f \in \mathscr{S}_{-}^{-r}(N \setminus G)$, we can consider the Mellin transform $\hat{f}(z)$ as a meromorphic function with values in $\mathscr{S}(K) = \mathscr{S}(S^1)$ via the usual integral

$$\hat{f}(z)(\theta) = \int_0^\infty f(a,\theta)a^{z-1}da$$

for $\operatorname{Re}(z) < -r$. Then $\hat{f}_n(-m)$ is the *n*-th Fourier coefficient of $\hat{f}(-m) \in \mathscr{S}(K)$. As such, $\hat{f}_n(-m)$ decreases more rapidly than any polynomial in *n*. Consequently, the series (3.7) converges absolutely and so do all its derivatives. Therefore $R_m^{\sharp}(f)$ defines a smooth function on $K = S^1$.

Now we can go back and take the Fourier series of (3.6) to at least formally write

(3.8)
$$R'(f)(a,\theta) = R'_{-r-\varepsilon}(f) - \sum_{m>r,m\in\mathbb{Z}} R^{\sharp}_{m}(f)(\theta)a^{-m-2}$$

If f has no K-types n with $|n| \ge m+2$, then $R_m^{\sharp}(f) = 0$.

Remark 3.4.2. If f lies in the image of $\mathscr{S}_H(S^1 \times \mathbb{R}) \hookrightarrow \mathscr{S}_-^{\mathrm{umg}}(N \setminus G)$ as in the setting of Theorem 3.3.1, then $\hat{f}_n(-m) = 0$ unless m = |n|, so all of the $R_m^{\sharp}(f) = 0$.

Question: What space does the right hand side of (3.8) live in?

We consider R'(f) as some kind of formal series of functions (or perhaps more accurately distributions) on $N^- \setminus G = V \setminus 0 = \mathbb{R}^{\times}_+ \times S^1 = A \times K$. Then the right hand side of (3.8) can be considered as an element of

$$\widehat{C}_+(N^-\backslash G) := C^\infty(N^-\backslash G) \underset{\mathscr{S}(K)[a^{-1}]}{\otimes} \mathscr{S}(K)\llbracket a^{-1} \rrbracket.$$

By residue theorem, (3.8) is independent of $\varepsilon > 0$ when considered as an element of $\widehat{C}_+(N^-\backslash G)$. Since $\mathscr{S}_-^{\mathrm{umg}}(N\backslash G)$ is a colimit, we deduce:

Theorem 3.4.3. The formula (3.8) defines an operator

$$R': \mathscr{S}^{\mathrm{umg}}_{-}(N\backslash G) \to \widehat{C}_{+}(N\backslash G).$$

4. Relation to asymptotics

In this section, which is entirely expository, we return to the K-finite situation where things are better understood. The goal is simply to spell out the relation between the inverse intertwining operator and asymptotics of functions on G (which is probably well-known to experts). In other words, we want to verify an archimedean version of [BK, Theorem 7.6]. At the heart, this is about the relation between the *c*-function, μ -function, and Plancherel theorem, which all originate with Harish-Chandra.

Fix a two sided irreducible representation τ of K, i.e., two integers n, m corresponding to K-types. We will only consider τ -spherical functions in this section.

We will follow the notation of [BK]. Let $X = M^{diag} \setminus (N^- \setminus G \times N \setminus G)$, the space of rank 1 2×2 matrices. Let $Y = M^{diag} \setminus (N \setminus G \times N \setminus G)$.

Recall that the right *G*-invariant measure on $N \setminus G$ with respect to the *NMK*-decomposition is given by $\delta(m)^{-1} dn dm dk = |m|^{-2} dn dm dk$. Here dm is the multiplicative Haar measure on $M = \mathbb{R}^{\times}$. We will use the notation $dm = \frac{da}{a}$ where da stands for the additive Haar measure on \mathbb{R} . 4.1. Principal series and Fourier transform. Let $\mathscr{M}(Y)$ be the space of smooth functions³ on $N \setminus G \times N \setminus G$ that satisfy $f(my_1, y_2) = \delta(m) f(y_1, m^{-1}y_2)$ that are Schwartz functions modulo M (on Y). We have the action map

$$\mathsf{A}:\mathscr{S}(G)\to\mathscr{M}(Y),\qquad\mathsf{A}(f)(y_1,y_2)=\int_N f(y_2^{-1}ny_1)dn,\qquad y_1,y_2\in G.$$

Note this is $G \times G$ equivariant if we define the action on $\mathscr{S}(G)$ by $((g_1, g_2)f)(x) = f(g_2^{-1}xg_1)$. Elements of $\mathcal{M}(Y)$ can be considered as operators on $C^{\infty}(N\backslash G)$. In this sense A does correspond to the action of $\mathscr{S}(G)$ on $C^{\infty}(N \setminus G)$. For $\psi \in C^{\infty}(N \setminus G)$, we have

$$\int_{N\setminus G} \psi(y_1) \mathsf{A}(f)(y_1, y_2) dy_1 = \int_G \psi(y_2g) f(g) dg_2$$

Meanwhile, the Fourier transform of $\mathscr{S}(G)$ in the sense of [A] comes from considering the action of $\mathscr{S}(G)$ on the principal series. So the Mellin transform of A is the Fourier transform, which we will make precise below.

Let us fix our notation for normalized principal series to agree with [A, C]. Let σ be either the trivial or sign representation of $M/A = \{\pm 1\}$. If ind_B^G denotes the un-normalized induction, then for $z \in \mathbb{C}$ let

$$I_B^G(\sigma \cdot a^z) = \operatorname{ind}_B^G(\sigma \cdot a^{z+1}) = \{ f \in C^\infty(N \setminus G) \mid f(nmg) = \sigma(m) |m|^{z+1} f(g), \ n \in N, m \in M \},$$

where $\delta^{1/2}(m) = |m|$ and we are identifying M with \mathbb{R}^{\times} via $\check{\alpha}$. Then $I_B^G(\sigma \cdot a^z)$ is a smooth, admissible G-representation, and its contragredient is isomorphic to

$$I_B^G(\sigma \cdot a^z)^{\sim} \cong I_B^G(\sigma \cdot a^{-z})$$

and the pairing is given by

$$I_B^G(\sigma \cdot a^z) \times I_B^G(\sigma \cdot a^{-z}) \to \mathbb{C} : \langle \varphi, f \rangle = \int_{B \setminus G} f \varphi dg$$

Note that $I_B^G(\sigma \cdot a^z)$ only has K-types n such that $\sigma(-1) = (-1)^n$. Now if $f \in \mathscr{S}(G)_{\tau}$, then $\mathsf{A}(f) \in \mathscr{M}(Y)_{n,m}$ and $\mathsf{A}(f)$ is determined by the restriction to $A \times 1$. Define

$$\hat{\mathsf{A}}(f)(z) = \int_0^\infty \mathsf{A}(f)(a,1)a^{z-1}da,$$

which converges for all $z \in \mathbb{C}$. Then $\hat{\mathsf{A}}(f)(z)$ corresponds to the action of f on $I_B^G(\sigma \cdot a^{z+1})$ where $\sigma(-1) = (-1)^n = (-1)^m$.

4.2. Eisenstein integrals. Assume from now on that $\sigma(-1) = (-1)^n = (-1)^m$. We can identify $I_B^G(\sigma \cdot a^z) = \operatorname{ind}_{K_M}^K(\sigma|_{K_M}) = \operatorname{c-ind}_{K_M}^K(\sigma|_{K_M})$. Let $V_n = \mathbb{C}e^{in\theta}$ denote the 1-dimensional representation of K corresponding to K-type n. By Frobenius reciprocity,

$$\operatorname{Hom}_{K}(V_{n}, I_{B}^{G}(\sigma \cdot a^{z})) = \operatorname{Hom}_{K_{M}}(V_{n}, \sigma) = \mathbb{C}.$$

The map corresponding to 1 sends $1 \cdot e^{in\theta} \in V_n$ to the function $\varphi_n \in I_B^G(\sigma \cdot a^z)$ with

$$\varphi_n(mk_\theta) = \operatorname{sign}(m)^n |m|^{z+1} e^{in\theta}, \quad m \in M = \mathbb{R}^{\times}, \ k_\theta = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

³Really $\mathcal{M}(Y)$ denotes sections of the analytic line bundle of measures on fibers of $Y \to B \setminus G$ via second projection. There is no $G \times G$ -invariant measure on Y, so the identification with smooth functions is not canonical.

JONATHAN WANG

We similarly have a function $\tilde{\varphi}_m \in I_B^G(\sigma \cdot a^{-z})_m$. Now the matrix coefficient $\langle \tilde{\varphi}_m, g \cdot \varphi_n \rangle \in C^{\infty}(G)$ corresponds to the image of $e^{in\theta} \otimes e^{im\theta}$ under the composition

$$\tau \to I_B^G(\sigma \cdot a^z) \otimes I_B^G(\sigma \cdot a^z)^{\sim} \to C^{\infty}(G)$$

and is given by the integral

$$\langle \tilde{\varphi}_m, g \cdot \varphi_n \rangle = \int_{B \setminus G} (g \cdot \varphi_n) \tilde{\varphi}_m = \int_K \varphi_n(k_\theta g) e^{im\theta} dk_\theta =: E_B(g, z)$$

where K has measure 1. The integral $E_B(g, z)$ agrees with the usual notion of *Eisenstein* integral due to Harish-Chandra (the integral depends on τ and σ ; it is simpler in the case $G = SL_2(\mathbb{R})$ because τ and σ are both 1-dimensional).

We can consider the dual of A as an operator $A^* : \mathscr{M}'(Y) \to \mathscr{S}'(G)$. Fixing choices of Haar measure, we identify distributions with generalized functions. Let τ_M denote $\tau|_{K_M}$. Restricting to τ -spherical distributions, we have

$$\mathsf{A}^*:\mathscr{S}'(A)=\mathscr{S}'(M)_{\tau_M}=\mathscr{M}'(Y)_{\tau}\to \mathscr{S}'(G)_{\tau}.$$

The key observation that helps to relate [BK] to the classical literature on harmonic analysis is that the Mellin transform of A^* is the Eisenstein integral.

For $f \in \mathscr{S}(G)_{\tau^*}$ and $\phi \in \mathscr{M}(Y)_{\tau}$, we have⁴

$$\begin{split} \langle \mathsf{A}^*(\phi), f \rangle &= \langle \phi, \mathsf{A}(f) \rangle = \int_Y \phi(y) \mathsf{A}(f)(y) dy \\ &= \int_{K \times K} \int_A \mathsf{A}(f)(ak_1, k_2) \phi(ak_1, k_2) \delta(a)^{-1} \frac{da}{a} dk_1 dk_2 \\ &= \int_{K \times K} \int_A \int_N \tau(1, k_2) f(k_2^{-1} n ak_1) \phi(ak_1, 1) \delta(a)^{-1} dn \frac{da}{a} dk_1 dk_2 \\ &= \int_G f(g) \left(\int_K \phi(k_\theta g, 1) e^{im\theta} dk_\theta \right) dg \end{split}$$

From these equalities and Mellin inversion we see that

$$\hat{\mathsf{A}}^{*}(\phi)(g,z) := \int_{0}^{\infty} \mathsf{A}^{*}(\phi)(a \cdot g, 1)a^{z-1}da = E_{B}(g, -z-1).$$

This gives another proof that \hat{A} is the Fourier transform, since Fourier transform is by definition the adjoint of the Eisenstein integrals. ⁵

4.3. Asymptotics map. We can define $\mathscr{S}^{\text{umg}}_+(X)$ analogously to $\mathscr{S}^{\text{umg}}_+(N^-\backslash G)$. In fact I believe that

$$\mathscr{S}^{\mathrm{umg}}_+(X) \cong \mathscr{S}^{\mathrm{umg}}_+(N^-\backslash G) \underset{\mathscr{S}(M)}{\widehat{\otimes}} \mathscr{S}(N\backslash G).$$

We can also define $\mathscr{M}^{umg}_{-}(Y)$ analogously to $\mathscr{S}^{umg}_{-}(N\backslash G)$. Again I believe we have an identification

$$\mathscr{M}^{\mathrm{umg}}_{-}(Y) \cong (\mathscr{S}^{\mathrm{umg}}_{-}(N\backslash G)) \underset{\mathscr{S}(M)}{\widehat{\otimes}} \mathscr{S}(N\backslash G)) \underset{\mathscr{S}(Y)}{\widehat{\otimes}} \mathscr{M}(Y).$$

Now looking at just the $K \times K$ -finite part, Corollary 3.1.6 implies that we have a topological isomorphism

$$R^{-1} \otimes 1 : \mathscr{M}^{\mathrm{umg}}_{-}(Y)_{(K \times K)} \xrightarrow{\sim} \mathscr{S}^{\mathrm{umg}}_{+}(X)_{(K \times K)}.$$

⁴We have a pairing between $\mathscr{M}(Y)$ and itself by integrating on Y.

⁵Informally: $A^*(a^{-z+1}) = E_B(g, -z)$. Then $\langle f, E_B(g, -z) \rangle = \langle f, A^*(a^{-z+1}) \rangle = \langle A(f), a^{-z+1} \rangle_Y = \int_A A(f)(a, 1)a^{-z+1}\delta(a)^{-1}da$.

Using [BK, Theorem 7.6] as *motivation*, we can define a $G \times G$ -equivariant operator

$$\operatorname{Asymp}: \mathscr{S}(G)_{(K \times K)} \to \mathscr{S}^{\operatorname{umg}}_+(X)_{(K \times K)}$$

as the composition

$$\mathscr{S}(G)_{(K\times K)} \xrightarrow{\mathsf{A}} \mathscr{M}(Y)_{(K\times K)} \hookrightarrow \mathscr{M}^{\mathrm{umg}}_{-}(Y)_{(K\times K)} \xrightarrow{R^{-1} \otimes 1} \mathscr{S}^{\mathrm{umg}}_{+}(X)_{(K\times K)}.$$

The operator Asymp is denoted by B^* in [BK], and it is the dual of the smooth Bernstein map. In the non-archimedean case, Asymp actually extends to an operator $C^{\infty}(G) \to C^{\infty}(X)$ so it makes sense to evaluate it on matrix coefficients of smooth *G*-representations. In the archimedean case, Asymp does not extend: equivalently, the dual operator B does not send $\mathscr{S}(X)$ to $\mathscr{S}(G)$ (if it did, this would give a proof of second adjointness, which definitely does not hold in the archimedean setting). The failure is related to the infinite number of poles of the *c*-function, which is what the previous sections tried to explain.

In the non-archimedean setting, the unique characterization of Asymp is that it is $G \times G$ equivariant and for a τ -spherical function f, we have

$$\operatorname{Asymp}(f)(1, a) = f(a) \quad \text{for} \quad |a| \ll 1,$$

cf. [BK, Lemma 5.5].

In the archimedean setting, we can no longer expect a true equality, so the analogous statement we will check as an analog of [BK, Theorem 7.6] is that Asymp(f) and f indeed have the same asymptotic behavior as $a \to 0$.

Proposition 4.3.1. Let $f \in \mathscr{S}(G)_{\tau}$. Then

 $\operatorname{Asymp}(f)(1,a) \sim f(a)$

as $a \to 0$, where \sim means that the limit of the ratio goes to 1.

The idea is that the asymptotics of Eisenstein integrals (i.e., matrix coefficients of principal series) are given by the *c*-function. This goes back to Langlands and Harish-Chandra. Then using a result of Arthur, we express any τ -spherical Schwartz function as an integral of Eisenstein integrals. The result of Arthur is sophisticated, but I believe I am using an easy part of it.

Proof. By a continuity argument, one should be able to assume $f \in C_c^{\infty}(G)_{\tau}$. Now we use some facts from the proof of the main theorem in [A]. Recall that τ corresponds to integers n, m. We assume $\sigma(-1) = (-1)^n = (-1)^m$ and suppress σ from the notation.

In [A, III.2, p. 73] the Fourier transform is defined by

$$F(z) = \int_G f(g) E_B(g, -z) dg, \qquad z \in \mathbb{C}.$$

In our notation, $F(z) = \hat{A}(f)(-z-1)$ corresponds to the action of f on $I_B^G(\sigma \cdot a^{-z})$. Then the proof of Arthur shows (cf. [A, p. 4]) that

(4.1)
$$f(a) = \frac{1}{2\pi i} \int_{\operatorname{Re}(z)=c} \mu_{\tau}(z) F(z) E_{B|B,1}(a,z) dz$$

for $a \in A, a < 1$ and $c \ll 0$. Here μ_{τ} is Harish-Chandra's μ -function. (The hard part of [A] was showing that this identity held even at a = 1.) There is a decomposition

$$E_B(a, z) = E_{B|B,1}(a, z) + E_{B|B,w_0}(a, z)$$

for a < 1 which is uniquely determined by an asymptotic expansion which we now recall (cf. [A, I.4]). Recall that $E_B(a, z) = \langle \tilde{\varphi}_m, a \cdot \varphi_n \rangle$ is the matrix coefficient of the principal series. By a classical argument of Langlands (cf. [C, Theorem 13.1]), we have

$$\langle \tilde{\varphi}_m, a \cdot \varphi_n \rangle \sim a^{1-z} \int_N \varphi_n(w_0 n) dn$$

as $a \to 0$ for $\operatorname{Re}(z) > 0$. In our notation, $\int_N \varphi_n(w_0 n) dn = R(a^{-(z+1)}e^{in\theta})(1) = c_n(z+1)$ so $E_B(a, z) \sim c_n(z+1)a^{1-z}$

as
$$a \to 0$$
. Then $E_{B|B,1}(a,z)$ is defined to have asymptotic approximation

$$E_{B|B,1}(a,z) \sim c_n(z+1)a^{1-z}$$

as $a \to 0$, for any $z \in \mathbb{C}$.

Above $\mu_{\tau}(z)$ denotes the Harish-Chandra μ -function with normalization incorporated. In our notation, $\mu_{\tau}(z) = (c_n(z+1)c_n(-z+1))^{-1} = (c_m(z+1)c_m(-z+1))^{-1}$ under the assumption $(-1)^n = (-1)^m$. Combined with (4.1), we deduce that

(4.2)
$$f(a) \sim \frac{1}{2\pi i} \int_{\operatorname{Re}(z)=c} F(z) c_n (1-z)^{-1} a^{1-z} dz.$$

On the other hand, by Mellin inversion,

$$\mathsf{A}(f)(a^{-1},1) = \frac{1}{2\pi i} \int_{\operatorname{Re}(z)=c-1} \hat{\mathsf{A}}(f)(-z)a^{-z}dz$$

We want to apply R^{-1} in the first variable. Recall that under the identification $N \setminus G = V^* \setminus 0$, the action of $\alpha(a)$ scales V^* by a^{-1} . Thus we can apply (3.1) to get

Asymp(f)(a,1) =
$$\frac{1}{2\pi i} \int_{\operatorname{Re}(z)=c-1} \hat{\mathsf{A}}(f)(-z)c_n(-z+2)^{-1}a^{z-2}dz$$

= $\frac{1}{2\pi i} \int_{\operatorname{Re}(z)=c} F(z)c_n(1-z)^{-1}a^{z-1}dz.$

Comparing with (4.2), we conclude that f(a) has the same asymptotics as $\operatorname{Asymp}(f)(a^{-1}, 1) = \operatorname{Asymp}(f)(1, a)$ as $a \to 0$.

References

- [A] Arthur. A Paley–Wiener theorem for real reductive groups.
- [BK] Bezrukavnikov, Kazhdan. Geometry of second adjointness.
- [CH] Crisp, Higson. Second adjoint theorem for $SL_2(\mathbb{R})$.

[C] Casselman. Jacquet modules and the asymptotic behaviour of matrix coefficients.

- [dC] du Cloux. Sur les représentations différentiables des groupes de Lie algébriques.
- [H] Helgason, Integral geometry and Radon transform.

[VW] Vogan, Wallach. Intertwining operators of reductive groups.

[W] Wallach, Corvallis article.

[Wa] Wang, J. Radon inversion formulas.