SMOOTH NON-ADMISSIBLE ASYMPTOTICS FOR SLy(R)

JONATHAN WANG

ABSTRACT. The goal of this note is to demonstrate that a notion of smooth asymptotics
map exists without K-finiteness assumptions for SLa(R) using explicit known formulas for
intertwining operators. This suggests that a theory parallel to Bernstein’s p-adic theory,
further developed by Bezrukavnikov—-Kazhdan [BK], should exist for real groups as well.

PRELIMINARIES

Let G = SLy(R). Let B denote the minimal parabolic of upper triangular matrices. We have
the Langlands decomposition B = NAM?! where N is the unipotent radical of B, we identify
A with RY = (0,00) via a — (* ,-1) and M* = {£1}. We have M = AM' = R* is a Levi
subgroup of B. Let K = SO(2) denote the maximal compact subgroup of G.

Identify N=\G with V' \ 0 where V' = R? and N\G with V*\ 0. Under this identifica-
tion (“,-1) € N\G identifies with (¢™* )es = aex and (* ,-1) € N\G identifies with

(") = ales
So if we want to define ||iamk| = ||a| for iamk € N~\G, this identifies with the usual
norm ||v|]| on v € V'\ 0. On the other hand |[namk|| = ||a|| for namk € N\G corresponds to

1§17 on £ € V*\ 0.

0.1. Let X = M%9\(N-\G x N\G), which identifies with the space of rank one 2 x 2 ma-
trices. Then the main result, intended to parallel [BK, Proposition 7.1, Theorem 7.6], can be
interpreted as:

Theorem 0.1.1 (cf. Theorem 3.4.3). There exists a G-equivariant map
Asymp : .Z(G) = C4(X)

that recovers asymptotics of matrixz coefficients, where .7 (G) is Casselman’s Schwartz space and
C+(X) is some “completed” space of formal series.

umg

1. THE SPACES ./

We have the algebraic Schwartz space .(N~\G) which roughly consists of functions f on
N~\G = V \ 0 such that all derivatives are rapidly decreasing as ||v|| — 0 and oco. This is a
Fréchet space and SF-module over .%(M) and .#(G) (cf. [CH, 4.3, 4.4]).

In our case, we have N"\G = A x K = A x S1. We can consider f € C®°(N~\G) as a
function f(a, ) where a = ||v|| and 6 is the angular variable. We will also use polar coordinates
to counsider a function f € C°(N\G) = C=(V*\ 0) as a function f(a,6) where a = ||£||. We
caution that the A-action by left translation corresponds to scaling by a on N~\G = V'\ 0 but
to scaling by a=! on N\G = V*\ 0.

In these coordinates, the semi-norms on .(N~\G) are of the form

I/ llag,r = sup|(ada)®dy f| - a”
0
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where «a, § are non-negative integers and r € R.
We now introduce the space /] (N~\G) for r € R. This space consists of all smooth
functions f: N7\G =V \ 0 — C such that

£l 4,08, = sup [(ady)*0} f| - a® < oo
a>1,0

for all R € R and all o, 8 > 0, and
[ fllap,r < 00

for our fixed number r and all a, 3 > 0. Then ] (N~\G) becomes a Fréchet space with respect
to these semi-norms.

We made the definition so that Ua = Clad,] acts on ] (N~\G) by left translations. One
can check that 9, sends .77 (N™\G) — I H(N7\G).

Define the LF-space

SIE(NT\G) = cc&lﬂi{m ST(NT\G).
reRy

This is the space of smooth functions f such that all derivatives are rapidly decreasing as
|v|| = oo and f has uniform moderate growth! as ||v|| — 0.

Analogously define ."™&(N~\G) with the two directions flipped.

We also define the spaces .#,¢(N\G) using these definitions where ||v]| is replaced by [|]|
for £ e V*\ 0= N\G.

2. INTERTWINING OPERATOR R
We have the standard intertwining operator
R=Rp:C*(N\G) = C®(N\G)
defined by Rf(g) = [, f(ng)dn. Recall that with our identifications this equals

RY(€) = /(5 e

Evidently R is right G-equivariant and hence Ug-equivariant.
We have that R is almost equivariant with respect to the left M-action in the sense that

a(a) - Rf = a®R(&(a) - f),

where &(a) - f(g) := f(&(a)g). Note that &(a) acts on both N=\G = V'\ 0 by the scalar a but
on N\G = V*\ 0 by the scalar a~!. We deduce that in polar coordinates,

(2.1) —ad,(Rf) = 2Rf + R(ad, f)

Lemma 2.0.1. The operator R extends to a continuous operator ™8 (N-\G) — S (N\G).
More specifically, R sends #T(N~\G) — STTH2(N\G).

Proof. Using the relation (2.1) and induction, it suffices to check the bounds on semi-norms for
a = [ = 0. For the purposes of bounding semi-norms we can replace f by the radial function

F(a) = sup |f(z)].

z||=a

If fe ZT(NT\G) then F(a) = O(a™") as a — 0 and F(a) is rapidly decreasing as a — oo.
Then
IRf(E)] < ||§||71/RF(\/ 1€]172 + 22)dz.

IHere uniform is with respect to Ua. I am not sure this definition is natural.
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Since F'(1/]|€]|72 4+ 22) is rapidly decreasing as z — oo, the integral converges. If ||£|| > 1 then
J5S F(\/1€17% + #?)dx is bounded by a constant times

1 lley—*
-2 2—T/2d _ r—1
/0 (€172 + 22)"2de = |¢] /

where fol(l + 22)7"/2dzx is just a finite number. This shows that |[Rf(£)| = O(||€]|72) as
€[] — oo
If [[£] < 1 then [° F(y/]€]| 2 + 2?)da is dominated by a constant multiple of

[ e+ oy an = el [+ el < el [0+t
1 0 0

for all R. This shows that Rf € .7~ "T?(N\G).
A careful check of the constant multipliers shows continuity with respect to the semi-norms.
O

1
(1422 2de < ||5HT—1/ (1+2%) " 2dz
0

2.1. Decomposition into K-types. Since K = SO(2), the K-types are 1-dimensional and
indexed by Z.
For any f € &/}™#(N~\G) we have a Fourier series (i.e., infinite K-type decomposition)

fla,0)=>" fa(a)e™
ne”Z

where f,(a) is a function on A = R} which is uniform moderate growth at 0 and all derivatives
rapidly decreasing at oco. The sum (and all its derivatives) converges absolutely since
1 2 ) 1 2m )
(i) fo= o [ fa,0) (~09)°(e™ )0 = o~ | O f -e 0
2 0 27 0
implies that
0" fa(@)] < sup|6] f(a,0)|

for all 8 € N. Using the same reasoning (e.g., for 8 + 2 above), we see that

2:2) [ fllasr = sugl(a5a>“6§f| ca” <Y [nl? sup{|(ada)* ful - 0"} < 22 fllaprr < 0
a, YLEZ a
when f € 7 (N7\G). Similarly, we have
1f 4 < D0 sup{|(a0a)° fu] - 0"} < 2 (2)f

nez

+a,f42r < 00

and analogous bounds for the semi-norms on .7} (N*¥\G).

2.2. Mellin transform and c-function. For a fixed K-type n € Z, consider f,(a)ei™? €
ZT(N7\G). Then we can define the Mellin transform of f,, by

fu) = [ " fu(@a*da

where the RHS is absolutely convergent for z € C with Re(z) > r. Mellin inversion theorem
says that
1 o —c—iy [ .
fnla) = / a” " fule +iy)dy

2m J_

for ¢ > r. Note that for ¢ > r, we have f,(a)a® € L?(A, ).

’a
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We know how the intertwining operator acts on principal series, cf. [W, Lemma 7.17]. If we
abuse notation, this says that

(2.3) R(a=%e™?) = ¢, (2)a*2e™?

where R is defined by the same integral as before, which converges absolutely for Re(z) > 1,
and we have a formula

7r1/2r(z;1 )F(é)
DT (55R)
Since all integrals converge absolutely, by Fubini and Mellin inversion we have
. 1 o .
R(fn(a)ema) = 7/ fn(z)cn(z)a’z_gdz ’ ezng
Re(z)=c

2mi

(2.4) cn(2) =

If we return to a general f € 7(N~\G) then we can express Rf as the sum of the RHS
above over all n € Z since the Fourier series for Rf is absolutely convergent.

3. DESCRIPTION OF THE INVERSE

3.1. The K-finite setting. First we fix a K-type n € Z and take f,(a)e’® € .Z~"(N\G).
Recall that this implies f,, is rapidly decreasing as a — 0 and f,,(a) = O(a") as a — .

Then the Mellin transform f,(z) is absolutely convergent for Re(z) < —r. Note that for
¢ < —r, we have f,(a)a® € L*(A, %) and consequently f,(z) € L?(c + iR).

Motivated by (2.3), we want to define
. 1 o .
(3.1) R (fu(a)e™) = — frn(2)en(—2z+2)"1a*2dz - ™?
27 Re(z)=c

for ¢ < 0.

Remark 3.1.1. The difference between this definition and the one in [CH] is that in loc cit. they
integrate over Re(z) = 1. This is the same distinction as between smooth and L? asymptotics
in the non-Archimedean case.

Now we use the explicit formula (2.4) for ¢, to make estimates. A consequence of Stirling’s
approximation is that

. T(z4+a) _
Jm gy = e <
for any a € C and € > 0. Using this, we get the asymptotic approximation
(3.2) en(z) ~ 7r1/2(§)_1/2.

ifarg(z—|n|) <m—c¢
We deduce that ¢, (—z +2)7! ~ 7~ 1/2(52)1/2 in any vertical line as Im(z) — occ.

Remark 3.1.2. The key observation to note is that this approximation is independent of the
K -type n. This is a general phenomenon for any G, cf. [VW, Lemma 3.5].

Lemma 3.1.3. The integral

R, (fu)(@) = —o ;

- " o (— ) -1 z72d
5] Re(z):cf (2)en(—2+2) " a z

converges absolutely if fne™? € " (N\G) and ¢ < —r and ¢ ¢ —n+2+7Z, . More specifically,
we have

(3-3) Ry o(f)(@)] < Be(fn)a?
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where Bc(fn) s a linear combination of semi-norms on f, with positive coefficients depending
on ¢ but not on n.

Proof. Rewrite

f 1y, _ len(—2 +2)] 71 R
/Re(z)_an(Z)Cn(_Z-FQ) 1‘d2’ = /Re(z)_c W . |(Z—|— 1)an(z)\dz

The (z + 1)z in the denominator is to ensure that |C"‘(_27+2)|4 € L?(c + iR). Integration by

(z+1)z|
parts implies that (92 f)N(z +2) = (2 + 1)z f(2).

If f, € S~"(N\G), then 92f,, € #~"T2(N\G). Thus (92f,)"(z + 2) converges absolutely
for Re(z) < —r and (9%f,)"(z + 2) € L?(c + iR). Now the Cauchy-Schwartz inequality gives
the bound

. — 2)-1
[ Va2 +2)Mas < | 2222
Re(z)=

(z+1)z ' I|(6§fﬂ)A||L2(c+2+i]R).

L2(c+iR)

Here ||%H L2(c44R) can be bounded above by a constant B. independent of n but de-

pendent on ¢. By Plancherel theorem,
da
O£ e = [ 102 An(a)a "

Since f,, € Z~"(N\G), the RHS is bounded above by

fe%s) 1
(I fall1,0,—r + ||fn||2,0,—r)2/ a* T da + (|| full - 1,0, + ||fn||—,2,0,R)2/ a? R 1da < oo,
1 0

where R € R can be taken arbitrarily negative. (]

Lemma 3.1.3 shows that the integral defining R;, . converges absolutely on all derivatives of

fn(a) as well, so the dominated convergence theorem implies that R'(f,(a)ei™?) is a smooth

function on N7\G. So we get an operator
R’n)C :STT(N\G)y, = C°(NT\G)n,
where the subscript n denotes the K-isotypic component corresponding to n € Z.
By dominated convergence theorem, we see that
1

a0 R (fn(a)e™)) = TM/R . fa(2)(z = 2)en(—2 4 2)"ta*2dz - €™

where (z — 2)fn(2) = —(a8a fn)"(2) — 2fn(2). We deduce that
(3.4) a0y R (frne™?) = =R (a0, frne™®) — 2R (fne™?).
We can therefore inductively get similar bounds as (3.3) for all the derivatives |(ad,)* R’ ( f,e™™?)|.

By consideration of the poles of ¢, (z)~!

as ¢ < min{—|n| + 2, —r} by contour shift.

, one observes that R;, . is independent of ¢ as long

Corollary 3.1.4. We have a continuous operator
R — R;w L ST (NG, — yflax{r+2a|n|}+6(N_\G)n
independent of ¢ < min{—|n|+ 2, —r}, where € > 0 is arbitrary.
Proof. For such a ¢, the bound (3.3) implies that all a-derivatives of R}, .(fn) grow like O(a"?)

as a — 0. Since we can move c arbitrarily far to the left, we also see that R, .(fn) = O(a™ %)
as a — oo for all R € R.
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We can easily extend R’ to an operator
R : SUE(N\G) (k) = L (NT\G) (1)

where the subscript (K) denotes the K-finite functions. We have essentially constructed R’ so
that the following is true:

Lemma 3.1.5. Let f,e™? € S"™8(N\Q),,. Then

(3.5) (R'(fae™ )" (2) = fa(=2 + 2)ca(z) "
for Re(z) > 0.

Proof. Since R'(f.e™™?) is defined by the absolutely convergent integral (3.1), which is es-
sentially an inverse Mellin transform, the claim follows by the usual (L') Fourier inversion
theorem. 0

By Mellin inversion theorem we get the following corollary:

Corollary 3.1.6. The operator

R: y_;_lmg(Ni\G)(K) — yllmg(N\G)(K)
is a topological isomorphism with inverse given by R’.
3.2. The problem. The naive attempt would be to extend R’ to an operator .#""¢(N\G) —
S PME(N\G) without K-finiteness by taking Fourier series. Unfortunately, this has a bug: in
order to make R’ well-defined, we had to shift move ¢ to the left so that ¢ < —|n| 4+ 2. If we

sum over all n, we would need to move c¢ infinitely far to the left, so there is vertical line one
can integrate over to define R’.

3.3. A theorem of Schwartz. Without K-finiteness, we do have the following inversion
theorem, due to Schwartz himself: we have an embedding
S (R?) — Z\ME(NT\G).
We also have an embedding
(S x R) — S"8(N\G)

where F' € .7(S* x R) is sent to f(aw) = a ' F(w,a™!) for w = (w1, ws) € S. Let S5 (S x R)
denote the subspace of functions F' such that

[ Fleaamda = [ flawada = fom)(e)

is a homogeneous polynomial in w;,ws of degree m for each m € Z,. Note that this implies

f(=m) € #(K) has K-type +m.
Theorem 3.3.1 (Schwartz, cf. [H, Theorem 2.4]). The operator R defines an isomorphism
S (R?) 5 .y (S* x R).

It is also perhaps worth pointing out that the inverse is defined by first taking a 1-dimensional
Fourier transform ? with respect to ||¢|| and then taking 2-dimensional Fourier transform to get
a function in .7 (R?).

2This Fourier transform is really a multiplicative convolution *r~1te~i"l€ldr of the function in SUME(N\G),
which Ngo would call a kind of Hankel transform
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3.4. Removing K-finiteness. Let us continue our approach. If we have f,e™? € .~ (N\G),,
we can use residue theorem to shift the contour, picking up residues along the way: if we fix a
small € > 0, then

(3.6) e(f) =Ry o (fa) = Y. fa(=m) (Res.—pmiacn(2) ™) a7

m>r,mez

where ¢, (2) 7! only has a pole at m + 2 if m < n — 2, so the sum is finite in the K-finite setting
(but will become infinite if we remove K-finiteness).

As a first step, we can use Lemma 3.1.3 to take Fourier series of R},
on all of Z~"(N\QG).

_r—e tO get an operator

Theorem 3.4.1. Let f € Y:T(N\G). For a fized € > 0, the sum

r— 5 ZRn,fr € a’)e

neZ

inf

R/

converges absolutely and defines an operator
R SZT(N\G) —» C*(N\G)

—r—g -
with the property that ||R' f||la,gr+2+e < 00 for all o, 8, and R
to this semi-norm.

r_e 15 continuous with respect

Proof. For f € ~"(N\G) not necessarily K-finite, we have the Fourier series f(a,f) =
ez fa(a)e™?. Let ' =1+ 2+ . Applying (2.2), we have the bound
IR i < Z|nlﬂsup{|3'( n(@)e™)]a"}

neZ

Using (3.3), the RHS is bounded by
> In?Be(fu)-

nez

Recall that B.(f,) is a linear combination of semi-norms || f,||n.0.~ where the coefficients do
not depend on n. The second inequality in (2.2) implies that

> 10 fallaorr < 2¢2) - (1 Fllaptzr-
nez
Therefore we conclude that ~
IR _cfllo.ga < Be(f) < o0
where B.(f) is a positive linear combination of semi-norms ||f||ss.,/. Using (3.4), we can

inductively get similar bounds for ||R_,__fl|la.s.~ for all a, 8 > 0. The exact same argument
gives continuous bounds on ||R", __ f|+.«.8.r for any R € R. This proves the theorem. O

Now for fixed m € Z let us look at the series
(3.7) =Y fu(-m)e™ (Res.—m 2 cn(2) ")
nez
Assuming m > —2, from (2.4) we get
—(=1)"=" min )|
Res,—m+2 cn(z)_l = ( )njm ( 2 ) ifnem+2+4+27,

and vanishes otherwise. By Stirling’s approximation again, this has magnitude asymptotically
equal to —L;n™*1 as |n| — oco.
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For f € .#~"(N\G), we can consider the Mellin transform f(z) as a meromorphic function
with values in .%(K) = .(S!) via the usual integral

F(2)(0) = / " Ha0)a~1da

for Re(z) < —r. Then f,(—m) is the n-th Fourier coefficient of f(—m) € #(K). As such,
fn(—m) decreases more rapidly than any polynomial in n. Consequently, the series (3.7) con-
verges absolutely and so do all its derivatives. Therefore R, (f) defines a smooth function on
K =St

Now we can go back and take the Fourier series of (3.6) to at least formally write

(3.8) R(f)(a,0)=R_, ()= > RL(fO)a"">

m>r,mez
If f has no K-types n with |n| > m + 2, then R}, (f) = 0.

Remark 3.4.2. If f lies in the image of .y (S* x R) — "™8(N\G) as in the setting of
Theorem 3.3.1, then f,,(—m) = 0 unless m = |n|, so all of the RY, (f) = 0.

Question: What space does the right hand side of (3.8) live in?

We consider R/(f) as some kind of formal series of functions (or perhaps more accurately
distributions) on N™\G = V'\ 0 =R} x S* = A x K. Then the right hand side of (3.8) can be
considered as an element of

C.(NT\G) := O“(N’\G)/ ® S (K)a ]
S (K)[a=1]

By residue theorem, (3.8) is independent of € > 0 when considered as an element of 5+ (N7\G).
Since .7""&(N\QG) is a colimit, we deduce:

Theorem 3.4.3. The formula (3.8) defines an operator

R : SYE(N\G) — C4 (N\G).

4. RELATION TO ASYMPTOTICS

In this section, which is entirely expository, we return to the K-finite situation where things
are better understood. The goal is simply to spell out the relation between the inverse inter-
twining operator and asymptotics of functions on G (which is probably well-known to experts).
In other words, we want to verify an archimedean version of [BK, Theorem 7.6]. At the heart,
this is about the relation between the c-function, p-function, and Plancherel theorem, which all
originate with Harish-Chandra.

Fix a two sided irreducible representation 7 of K, i.e., two integers n, m corresponding to
K-types. We will only consider m-spherical functions in this section.

We will follow the notation of [BK]. Let X = M%%9\(N~\G x N\G), the space of rank 1
2 x 2 matrices. Let Y = M#99\(N\G x N\G).

Recall that the right G-invariant measure on N\G with respect to the N M K-decomposition
is given by 6(m)~tdndmdk = |m|~2dndmdk. Here dm is the multiplicative Haar measure on
M =R*. We will use the notation dm = % where da stands for the additive Haar measure on
R.
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4.1. Principal series and Fourier transform. Let .# (Y) be the space of smooth functions?
on N\G x N\G that satisfy f(myi,y2) = 6(m)f(y1, m ™ ‘ys) that are Schwartz functions modulo
M (on Y'). We have the action map

A F(G) . (Y), A ) = /N fu3tny)dn,  ywe € G.

Note this is G x G equivariant if we define the action on .(G) by ((g1,92)f)(x) = f(g5 ‘zg1).
Elements of .#(Y) can be considered as operators on C°°(N\G). In this sense A does corre-
spond to the action of .#(G) on C*°(N\G). For ¢ € C*(N\G), we have

Y(y)AS) (Y1, y2)dyr = / ¥(y29)f(9)dg.
N\G G
Meanwhile, the Fourier transform of .(G) in the sense of [A] comes from considering the action
of .Z(G) on the principal series. So the Mellin transform of A is the Fourier transform, which
we will make precise below.

Let us fix our notation for normalized principal series to agree with [A; C]. Let o be either
the trivial or sign representation of M/A = {£1}. If ind% denotes the un-normalized induction,
then for z € C let

I§(0-a*) = ind§(0 - a*) = {f € C®(N\G) | f(nmg) = o(m)|m|**" f(g), n € N,m € M},
where 6'/2(m) = |m| and we are identifying M with R* via & Then I§(o - a*) is a smooth,
admissible G-representation, and its contragredient is isomorphic to

I§5(0-a*)” 2 I5(0-a™?)
and the pairing is given by
I§(0-a*) x I§(0-a™*) = C: (p, f) = e fedg.

Note that I§ (o - a*) only has K-types n such that o(—1) = (—=1)".
Now if f € Z(G)-, then A(f) € A (Y )n,m and A(f) is determined by the restriction to
A x 1. Define

AF)(2) = / A (@, Da*da,

which converges for all z € C. Then A(f)(z) corresponds to the action of f on I§ (o - a*t!)
where o(—1) = (—-1)" = (—-1)™.

4.2. Eisenstein integrals. Assume from now on that o(—1) = (-1)" = (=1)". We can
identify 1§ (0-a*) = indﬁM (olky) = c—indfM (0]k,, ). Let V;, = Ce™? denote the 1-dimensional
representation of K corresponding to K-type n. By Frobenius reciprocity,

Homp (V,,, I§ (0 - a*)) = Homg,, (V,,,0) = C.
The map corresponding to 1 sends 1-e™’ € V,, to the function ¢, € Ig(a - a®) with

cosf) —sin 0)

e n z+1 _in6 _ X _
Pn(mhke) = sign(m)”|m[* €™, m e M =R", ky = (sm@ cos 6

3Really .#Z(Y) denotes sections of the analytic line bundle of measures on fibers of ¥ — B\G via second
projection. There is no G X G-invariant measure on Y, so the identification with smooth functions is not
canonical.
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We similarly have a function @,, € I§(0 - a=*),,. Now the matrix coefficient (@G, g - ¢n) €
C> (@) corresponds to the image of e™? ® ™% under the composition

= I5(0-a*) @ I§(0-a*)™ — C°(G)
and is given by the integral

(Pm>g - on) =/ (g-wn)¢>m=/ on(kog)e™ dky =: Ep(g, 2)
B\G K

where K has measure 1. The integral Ep(g,z) agrees with the usual notion of FEisenstein
integral due to Harish-Chandra (the integral depends on 7 and o; it is simpler in the case
G = SL2(R) because 7 and o are both 1-dimensional).

We can consider the dual of A as an operator A* : .Z'(Y) — #/(G). Fixing choices of Haar
measure, we identify distributions with generalized functions. Let 75 denote 7|k,,. Restricting
to 7-spherical distributions, we have

A" F(A) = (M), = M (Y)r = F(G)r

The key observation that helps to relate [BK] to the classical literature on harmonic analysis is
that the Mellin transform of A* is the Fisenstein integral.
For f € #(G),~ and ¢ € 4 (Y),, we have?

(A (), f) = / oy

/K K/ J(aks, kz)g(aky, k2)d(a)™
d
B /KxK /A /N 7(1,k2) f (k" naki)é(aks, 1)6<a>—1dn§dk1dk2

= /G f(9) ( /K ¢<keg71>e"’”9dke) dg

From these equalities and Mellin inversion we see that

A(6)(9,2) 1= /0°°A*<¢><a 0. 1)a* da = Fp(gr—=— 1),

1da = dkydky

This gives another proof that A is the Fourier transform, since Fourier transform is by definition
the adjoint of the Eisenstein integrals. 5

4.3. Asymptotics map. We can define .™#(X) analogously to .#,"#(N~\G). In fact I
believe that

~

SN = AHNNG) B (N\G).

We can also define .Z""#(Y') analogously to .""¢(N\G). Again I believe we have an identi-
fication

///L‘mg(Y)%(ffmg(N\G)y® S (N\Q)) @ #(Y).
(M) Z(Y)

Now looking at just the K x K-finite part, Corollary 3.1.6 implies that we have a topological
isomorphism

R'®1: (Y ) (ewi) = L4 (X) (ke x k)

4We have a pairing between .#(Y) and itself by integrating on Y.
SInformally: A*(a=*t1) = Epg(g9,—2). Then {(f,Egp(g,—2)) = {(f,A*(a=*t1)) = (A(f),a*T1)y =
Ja A(f)(a,1)a=*T15(a) " da.
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Using [BK, Theorem 7.6] as motivation, we can define a G x G-equivariant operator
Abymp : y(G)(KXK) — y_:_nng(X)(KXK)

as the composition

y(G)(KxK) i ///(Y)(KXK) — ///]—lmg(y)(KxK) Rﬂl y-}-lmg(X)(KxKy

The operator Asymp is denoted by B* in [BK], and it is the dual of the smooth Bernstein
map. In the non-archimedean case, Asymp actually extends to an operator C*°(G) — C*°(X)
so it makes sense to evaluate it on matrix coefficients of smooth G-representations. In the
archimedean case, Asymp does not extend: equivalently, the dual operator B does not send
S (X) to (G) (if it did, this would give a proof of second adjointness, which definitely does
not hold in the archimedean setting). The failure is related to the infinite number of poles of
the c-function, which is what the previous sections tried to explain.

In the non-archimedean setting, the unique characterization of Asymp is that it is G x G-
equivariant and for a 7-spherical function f, we have

Asymp(f)(1,a) = f(a) ~ for |af <1,

cf. [BK, Lemma 5.5].

In the archimedean setting, we can no longer expect a true equality, so the analogous state-
ment we will check as an analog of [BK, Theorem 7.6] is that Asymp(f) and f indeed have the
same asymptotic behavior as a — 0.

Proposition 4.3.1. Let f € #(G),. Then
Asymp(f)(1,a) ~ f(a)

as a — 0, where ~ means that the limit of the ratio goes to 1.

The idea is that the asymptotics of Eisenstein integrals (i.e., matrix coefficients of principal
series) are given by the c-function. This goes back to Langlands and Harish-Chandra. Then
using a result of Arthur, we express any 7-spherical Schwartz function as an integral of Eisenstein
integrals. The result of Arthur is sophisticated, but I believe I am using an easy part of it.

Proof. By a continuity argument, one should be able to assume f € C2°(G),. Now we use some
facts from the proof of the main theorem in [A]. Recall that 7 corresponds to integers n,m.
We assume o(—1) = (—1)" = (—1)™ and suppress o from the notation.

In [A, II1.2, p. 73] the Fourier transform is defined by

F() = [ 10)Es(g.—2)dg,  zeC.
In our notation, F(z) = A(f)(—z — 1) corresponds to the action of f on I§ (o - a™?).
Then the proof of Arthur shows (cf. [A, p. 4]) that
1
(4.1) fla) = By pr(2)F(2)Eg|p,1(a, z)dz
T JRe(z)=c

fora € A,a <1 and ¢ < 0. Here . is Harish-Chandra’s py-function. (The hard part of [A] was
showing that this identity held even at a = 1.) There is a decomposition

Ep(a,z) = Eg|p,1(a,2) + EB|Buw,(a, 2)
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for a < 1 which is uniquely determined by an asymptotic expansion which we now recall (cf. [A,
1.4]). Recall that Ep(a, z) = (Pm,a - p,) is the matrix coefficient of the principal series. By a
classical argument of Langlands (cf. [C, Theorem 13.1]), we have

(Pmsra - pn) ~ al™? / ©n(won)dn
N

as a — 0 for Re(z) > 0. In our notation, [, ¢, (won)dn = R(a=FtDe)(1) = ¢, (2 + 1) so
Ep(a,z) ~cp(z +1)a* ™2
as a — 0. Then Epp (a, z) is defined to have asymptotic approximation

Epp.1(a,z) ~ cn(z + a'~*

as a — 0, for any z € C.

Above p,(2) denotes the Harish-Chandra p-function with normalization incorporated. In our
notation, ;. (2) = (en(z + 1)en(—2 4+ 1)) = (em(z + 1em(—2 + 1))~} under the assumption
(=1)" = (—1)™. Combined with (4.1), we deduce that

(4.2) fla) ~ i Ju . F(2)en(1—2)"ta'2dz.

On the other hand, by Mellin inversion,

1 .
AN ) =5 [ A
2mi Re(z)=c—1
We want to apply R~ in the first variable. Recall that under the identification N\G = V*\ 0,
the action of a(a) scales V* by a~!. Thus we can apply (3.1) to get

1

Asmp(No ) =5 [ AP+

1
= — F(2)en(1 — 2) ta* 2.
2mi Re(z)=c
Comparing with (4.2), we conclude that f(a) has the same asymptotics as Asymp(f)(a=*,1)
Asymp(f)(1,a) as a — 0.

o
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