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Abstract. The goal of this note is to demonstrate that a notion of smooth asymptotics

map exists without K-finiteness assumptions for SL2(R) using explicit known formulas for
intertwining operators. This suggests that a theory parallel to Bernstein’s p-adic theory,

further developed by Bezrukavnikov–Kazhdan [BK], should exist for real groups as well.

Preliminaries

Let G = SL2(R). Let B denote the minimal parabolic of upper triangular matrices. We have
the Langlands decomposition B = NAM1 where N is the unipotent radical of B, we identify
A with R×+ = (0,∞) via a 7→ ( a a−1 ) and M1 = {±1}. We have M = AM1 = R× is a Levi
subgroup of B. Let K = SO(2) denote the maximal compact subgroup of G.

Identify N−\G with V \ 0 where V = R2 and N\G with V ∗ \ 0. Under this identifica-
tion ( a a−1 ) ∈ N−\G identifies with

(
a−1

a

)
e2 = ae2 and ( a a−1 ) ∈ N\G identifies with

e∗2 ( a a−1 ) = a−1e∗2.
So if we want to define ‖n̄amk‖ = ‖a‖ for n̄amk ∈ N−\G, this identifies with the usual

norm ‖v‖ on v ∈ V \ 0. On the other hand ‖namk‖ = ‖a‖ for namk ∈ N\G corresponds to
‖ξ‖−1 on ξ ∈ V ∗ \ 0.

0.1. Let X = Mdiag\(N−\G × N\G), which identifies with the space of rank one 2 × 2 ma-
trices. Then the main result, intended to parallel [BK, Proposition 7.1, Theorem 7.6], can be
interpreted as:

Theorem 0.1.1 (cf. Theorem 3.4.3). There exists a G-equivariant map

Asymp : S (G)→ Ĉ+(X)

that recovers asymptotics of matrix coefficients, where S (G) is Casselman’s Schwartz space and

Ĉ+(X) is some “completed” space of formal series.

1. The spaces S umg
±

We have the algebraic Schwartz space S (N−\G) which roughly consists of functions f on
N−\G = V \ 0 such that all derivatives are rapidly decreasing as ‖v‖ → 0 and ∞. This is a
Fréchet space and SF-module over S (M) and S (G) (cf. [CH, 4.3, 4.4]).

In our case, we have N−\G = A × K = A × S1. We can consider f ∈ C∞(N−\G) as a
function f(a, θ) where a = ‖v‖ and θ is the angular variable. We will also use polar coordinates
to consider a function f ∈ C∞(N\G) = C∞(V ∗ \ 0) as a function f(a, θ) where a = ‖ξ‖. We
caution that the A-action by left translation corresponds to scaling by a on N−\G = V \ 0 but
to scaling by a−1 on N\G = V ∗ \ 0.

In these coordinates, the semi-norms on S (N−\G) are of the form

‖f‖α,β,r := sup
a,θ
|(a∂a)α∂βθ f | · a

r

1
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where α, β are non-negative integers and r ∈ R.
We now introduce the space S r

+(N−\G) for r ∈ R. This space consists of all smooth
functions f : N−\G = V \ 0→ C such that

‖f‖+,α,β,R := sup
a≥1,θ

|(a∂a)α∂βθ f | · a
R <∞

for all R ∈ R and all α, β ≥ 0, and
‖f‖α,β,r <∞

for our fixed number r and all α, β ≥ 0. Then S r
+(N−\G) becomes a Fréchet space with respect

to these semi-norms.
We made the definition so that Ua = C[a∂a] acts on S r

+(N−\G) by left translations. One

can check that ∂a sends S r
+(N−\G)→ S r+1

+ (N−\G).
Define the LF-space

S umg
+ (N−\G) = colim

r∈R+

S r
+(N−\G).

This is the space of smooth functions f such that all derivatives are rapidly decreasing as
‖v‖ → ∞ and f has uniform moderate growth1 as ‖v‖ → 0.

Analogously define S umg
− (N−\G) with the two directions flipped.

We also define the spaces S umg
± (N\G) using these definitions where ‖v‖ is replaced by ‖ξ‖

for ξ ∈ V ∗ \ 0 = N\G.

2. Intertwining operator R

We have the standard intertwining operator

R = RB : C∞c (N−\G)→ C∞(N\G)

defined by Rf(g) =
∫
N
f(ng)dn. Recall that with our identifications this equals

Rf(ξ) =

∫
〈ξ,v〉=1

f(v)dµξ.

Evidently R is right G-equivariant and hence Ug-equivariant.
We have that R is almost equivariant with respect to the left M -action in the sense that

α̌(a) ·Rf = a2R(α̌(a) · f),

where α̌(a) · f(g) := f(α̌(a)g). Note that α̌(a) acts on both N−\G = V \ 0 by the scalar a but
on N\G = V ∗ \ 0 by the scalar a−1. We deduce that in polar coordinates,

(2.1) −a∂a(Rf) = 2Rf +R(a∂af)

Lemma 2.0.1. The operator R extends to a continuous operator S umg
+ (N−\G)→ S umg

− (N\G).

More specifically, R sends S r
+(N−\G)→ S −r+2

− (N\G).

Proof. Using the relation (2.1) and induction, it suffices to check the bounds on semi-norms for
α = β = 0. For the purposes of bounding semi-norms we can replace f by the radial function

F (a) = sup
‖x‖=a

|f(x)|.

If f ∈ S r
+(N−\G) then F (a) = O(a−r) as a → 0 and F (a) is rapidly decreasing as a → ∞.

Then

|Rf(ξ)| ≤ ‖ξ‖−1
∫
R
F (
√
‖ξ‖−2 + x2)dx.

1Here uniform is with respect to Ua. I am not sure this definition is natural.
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Since F (
√
‖ξ‖−2 + x2) is rapidly decreasing as x→∞, the integral converges. If ‖ξ‖ ≥ 1 then∫∞

0
F (
√
‖ξ‖−2 + x2)dx is bounded by a constant times∫ 1

0

(‖ξ‖−2 + x2)−r/2dx = ‖ξ‖r−1
∫ ‖ξ‖−1

0

(1 + x2)−r/2dx ≤ ‖ξ‖r−1
∫ 1

0

(1 + x2)−r/2dx

where
∫ 1

0
(1 + x2)−r/2dx is just a finite number. This shows that |Rf(ξ)| = O(‖ξ‖r−2) as

‖ξ‖ → ∞.

If ‖ξ‖ ≤ 1 then
∫∞
0
F (
√
‖ξ‖−2 + x2)dx is dominated by a constant multiple of∫ ∞

1

(‖ξ‖−2 + x2)−R/2dx = ‖ξ‖R
∫ ∞
0

(1 + (‖ξ‖x)2)−R/2dx ≤ ‖ξ‖R
∫ ∞
0

(1 + x2)−R/2dx

for all R. This shows that Rf ∈ S −r+2
− (N\G).

A careful check of the constant multipliers shows continuity with respect to the semi-norms.
�

2.1. Decomposition into K-types. Since K = SO(2), the K-types are 1-dimensional and
indexed by Z.

For any f ∈ S umg
+ (N−\G) we have a Fourier series (i.e., infinite K-type decomposition)

f(a, θ) =
∑
n∈Z

fn(a)einθ

where fn(a) is a function on A = R×+ which is uniform moderate growth at 0 and all derivatives
rapidly decreasing at ∞. The sum (and all its derivatives) converges absolutely since

(in)βfn =
1

2π

∫ 2π

0

f(a, θ) · (−∂θ)β(e−inθ)dθ =
1

2π

∫ 2π

0

∂βθ f · e
−inθdθ

implies that

|nβfn(a)| ≤ sup
θ
|∂βθ f(a, θ)|

for all β ∈ N. Using the same reasoning (e.g., for β + 2 above), we see that

(2.2) ‖f‖α,β,r = sup
a,θ
|(a∂a)α∂βθ f | · a

r ≤
∑
n∈Z
|n|β sup

a
{|(a∂a)αfn| · ar} ≤ 2ζ(2)‖f‖α,β+2,r <∞

when f ∈ S r
+(N−\G). Similarly, we have

‖f‖+,α,β,R ≤
∑
n∈Z

nβ sup
a≥1
{|(a∂a)αfn| · aR} ≤ 2ζ(2)‖f‖+,α,β+2,r <∞

and analogous bounds for the semi-norms on S umg
± (N±\G).

2.2. Mellin transform and c-function. For a fixed K-type n ∈ Z, consider fn(a)einθ ∈
S r

+(N−\G). Then we can define the Mellin transform of fn by

f̂n(z) =

∫ ∞
0

fn(a)az−1da

where the RHS is absolutely convergent for z ∈ C with Re(z) > r. Mellin inversion theorem
says that

fn(a) =
1

2πi

∫ ∞
−∞

a−c−iy f̂n(c+ iy)dy

for c > r. Note that for c > r, we have fn(a)ac ∈ L2(A, daa ).
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We know how the intertwining operator acts on principal series, cf. [W, Lemma 7.17]. If we
abuse notation, this says that

(2.3) R(a−zeinθ) = cn(z)az−2einθ

where R is defined by the same integral as before, which converges absolutely for Re(z) > 1,
and we have a formula

(2.4) cn(z) =
π1/2Γ( z−12 )Γ( z2 )

Γ( z+n2 )Γ( z−n2 )
.

Since all integrals converge absolutely, by Fubini and Mellin inversion we have

R(fn(a)einθ) =
1

2πi

∫
Re(z)=c

f̂n(z)cn(z)az−2dz · einθ

If we return to a general f ∈ S r
+(N−\G) then we can express Rf as the sum of the RHS

above over all n ∈ Z since the Fourier series for Rf is absolutely convergent.

3. Description of the inverse

3.1. The K-finite setting. First we fix a K-type n ∈ Z and take fn(a)einθ ∈ S −r− (N\G).
Recall that this implies fn is rapidly decreasing as a→ 0 and fn(a) = O(ar) as a→∞.

Then the Mellin transform f̂n(z) is absolutely convergent for Re(z) < −r. Note that for

c < −r, we have fn(a)ac ∈ L2(A, daa ) and consequently f̂n(z) ∈ L2(c+ iR).
Motivated by (2.3), we want to define

(3.1) R′(fn(a)einθ) =
1

2πi

∫
Re(z)=c

f̂n(z)cn(−z + 2)−1az−2dz · einθ

for c� 0.

Remark 3.1.1. The difference between this definition and the one in [CH] is that in loc cit. they
integrate over Re(z) = 1. This is the same distinction as between smooth and L2 asymptotics
in the non-Archimedean case.

Now we use the explicit formula (2.4) for cn to make estimates. A consequence of Stirling’s
approximation is that

lim
|z|→∞

Γ(z + a)

Γ(z)
z−a = 1, |arg z| ≤ π − ε

for any a ∈ C and ε > 0. Using this, we get the asymptotic approximation

(3.2) cn(z) ∼ π1/2( z2 )−1/2.

if arg(z − |n|) ≤ π − ε
We deduce that cn(−z + 2)−1 ∼ π−1/2(−z2 )1/2 in any vertical line as Im(z)→∞.

Remark 3.1.2. The key observation to note is that this approximation is independent of the
K-type n. This is a general phenomenon for any G, cf. [VW, Lemma 3.5].

Lemma 3.1.3. The integral

R′n,c(fn)(a) :=
1

2πi

∫
Re(z)=c

f̂n(z)cn(−z + 2)−1az−2dz

converges absolutely if fne
inθ ∈ S −r− (N\G) and c < −r and c /∈ −n+2+Z+. More specifically,

we have

(3.3) |R′n,c(fn)(a)| ≤ B̃c(fn)ac−2
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where B̃c(fn) is a linear combination of semi-norms on fn with positive coefficients depending
on c but not on n.

Proof. Rewrite∫
Re(z)=c

|f̂n(z)cn(−z + 2)−1|dz =

∫
Re(z)=c

|cn(−z + 2)|−1

|(z + 1)z|
· |(z + 1)zf̂n(z)|dz.

The (z + 1)z in the denominator is to ensure that |cn(−z+2)|−1

|(z+1)z| ∈ L2(c + iR). Integration by

parts implies that (∂2af)∧(z + 2) = (z + 1)zf̂(z).
If fn ∈ S −r− (N\G), then ∂2afn ∈ S −r+2

− (N\G). Thus (∂2afn)∧(z + 2) converges absolutely
for Re(z) < −r and (∂2afn)∧(z + 2) ∈ L2(c + iR). Now the Cauchy–Schwartz inequality gives
the bound∫

Re(z)=c

|f̂n(z)cn(−z + 2)−1|dz ≤
∥∥∥∥cn(−z + 2)−1

(z + 1)z

∥∥∥∥
L2(c+iR)

· ‖(∂2afn)∧‖L2(c+2+iR).

Here ‖ cn(−z+2)−1

(z+1)z ‖L2(c+iR) can be bounded above by a constant Bc independent of n but de-

pendent on c. By Plancherel theorem,

‖(∂2afn)∧‖2L2(c+2+iR) =

∫
A

|∂2afn(a)ac+2|2 da
a
.

Since fn ∈ S −r− (N\G), the RHS is bounded above by

(‖fn‖1,0,−r + ‖fn‖2,0,−r)2
∫ ∞
1

a2(c+r)−1da+ (‖fn‖−,1,0,R + ‖fn‖−,2,0,R)2
∫ 1

0

a2(c−R)−1da <∞,

where R ∈ R can be taken arbitrarily negative. �

Lemma 3.1.3 shows that the integral defining R′n,c converges absolutely on all derivatives of

fn(a) as well, so the dominated convergence theorem implies that R′(fn(a)einθ) is a smooth
function on N−\G. So we get an operator

R′n,c : S −r− (N\G)n → C∞(N−\G)n,

where the subscript n denotes the K-isotypic component corresponding to n ∈ Z.
By dominated convergence theorem, we see that

a∂aR
′(fn(a)einθ)) =

1

2πi

∫
Re(z)=c

f̂n(z)(z − 2)cn(−z + 2)−1az−2dz · einθ

where (z − 2)f̂n(z) = −(a∂afn)∧(z)− 2f̂n(z). We deduce that

(3.4) a∂aR
′(fne

inθ) = −R′(a∂afneinθ)− 2R′(fne
inθ).

We can therefore inductively get similar bounds as (3.3) for all the derivatives |(a∂a)αR′(fne
inθ)|.

By consideration of the poles of cn(z)−1, one observes that R′n,c is independent of c as long
as c < min{−|n|+ 2,−r} by contour shift.

Corollary 3.1.4. We have a continuous operator

R′ = R′n,c : S −r− (N\G)n → S
max{r+2,|n|}+ε
+ (N−\G)n

independent of c < min{−|n|+ 2,−r}, where ε > 0 is arbitrary.

Proof. For such a c, the bound (3.3) implies that all a-derivatives of R′n,c(fn) grow like O(ac−2)

as a → 0. Since we can move c arbitrarily far to the left, we also see that R′n,c(fn) = O(a−R)
as a→∞ for all R ∈ R. �
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We can easily extend R′ to an operator

R′ : S umg
− (N\G)(K) → S umg

+ (N−\G)(K)

where the subscript (K) denotes the K-finite functions. We have essentially constructed R′ so
that the following is true:

Lemma 3.1.5. Let fne
inθ ∈ S umg

− (N\G)n. Then

(3.5) (R′(fne
inθ))∧(z) = f̂n(−z + 2)cn(z)−1

for Re(z)� 0.

Proof. Since R′(fne
inθ) is defined by the absolutely convergent integral (3.1), which is es-

sentially an inverse Mellin transform, the claim follows by the usual (L1) Fourier inversion
theorem. �

By Mellin inversion theorem we get the following corollary:

Corollary 3.1.6. The operator

R : S umg
+ (N−\G)(K) → S umg

− (N\G)(K)

is a topological isomorphism with inverse given by R′.

3.2. The problem. The naive attempt would be to extend R′ to an operator S umg
− (N\G)→

S umg
+ (N−\G) without K-finiteness by taking Fourier series. Unfortunately, this has a bug: in

order to make R′ well-defined, we had to shift move c to the left so that c < −|n| + 2. If we
sum over all n, we would need to move c infinitely far to the left, so there is vertical line one
can integrate over to define R′.

3.3. A theorem of Schwartz. Without K-finiteness, we do have the following inversion
theorem, due to Schwartz himself: we have an embedding

S (R2) ↪→ S umg
+ (N−\G).

We also have an embedding

S (S1 × R) ↪→ S umg
− (N\G)

where F ∈ S (S1×R) is sent to f(aω) = a−1F (ω, a−1) for ω = (ω1, ω2) ∈ S1. Let SH(S1×R)
denote the subspace of functions F such that∫

R
F (ω, a)amda =

∫
R
f(aω)a−m−1da =: f̂(−m)(ω)

is a homogeneous polynomial in ω1, ω2 of degree m for each m ∈ Z+. Note that this implies

f̂(−m) ∈ S (K) has K-type ±m.

Theorem 3.3.1 (Schwartz, cf. [H, Theorem 2.4]). The operator R defines an isomorphism

S (R2)
∼→ SH(S1 × R).

It is also perhaps worth pointing out that the inverse is defined by first taking a 1-dimensional
Fourier transform 2 with respect to ‖ξ‖ and then taking 2-dimensional Fourier transform to get
a function in S (R2).

2This Fourier transform is really a multiplicative convolution ∗r−1e−ir‖ξ‖dr of the function in S umg
− (N\G),

which Ngo would call a kind of Hankel transform
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3.4. Removing K-finiteness. Let us continue our approach. If we have fne
inθ ∈ S −r− (N\G)n,

we can use residue theorem to shift the contour, picking up residues along the way: if we fix a
small ε > 0, then

(3.6) R′n,c(fn) = R′n,−r−ε(fn)−
∑

m>r,m∈Z
f̂n(−m)

(
Resz=m+2 cn(z)−1

)
· a−m−2

where cn(z)−1 only has a pole at m+ 2 if m ≤ n− 2, so the sum is finite in the K-finite setting
(but will become infinite if we remove K-finiteness).

As a first step, we can use Lemma 3.1.3 to take Fourier series of R′n,−r−ε to get an operator

on all of S −r− (N\G).

Theorem 3.4.1. Let f ∈ S −r− (N\G). For a fixed ε > 0, the sum

R′−r−ε(f)(a, θ) :=
∑
n∈Z

R′n,−r−ε(fn)(a)einθ

converges absolutely and defines an operator

R′−r−ε : S −r− (N\G)→ C∞(N−\G)

with the property that ‖R′f‖α,β,r+2+ε < ∞ for all α, β, and R′−r−ε is continuous with respect
to this semi-norm.

Proof. For f ∈ S −r− (N\G) not necessarily K-finite, we have the Fourier series f(a, θ) =∑
n∈Z fn(a)einθ. Let r′ = r + 2 + ε. Applying (2.2), we have the bound

‖R′−r−εf‖0,β,r′ ≤
∑
n∈Z
|n|β sup

a
{|R′(fn(a)einθ)|ar

′
}

Using (3.3), the RHS is bounded by ∑
n∈Z
|n|βB̃c(fn).

Recall that B̃c(fn) is a linear combination of semi-norms ‖fn‖α,0,r′ where the coefficients do
not depend on n. The second inequality in (2.2) implies that∑

n∈Z
|n|β‖fn‖α,0,r′ ≤ 2ζ(2) · ‖f‖α,β+2,r′ .

Therefore we conclude that
‖R′−r−εf‖0,β,r′ ≤ B̃c(f) <∞

where B̃c(f) is a positive linear combination of semi-norms ‖f‖α,β,r′ . Using (3.4), we can
inductively get similar bounds for ‖R′−r−εf‖α,β,r′ for all α, β ≥ 0. The exact same argument
gives continuous bounds on ‖R′−r−εf‖+,α,β,R for any R ∈ R. This proves the theorem. �

Now for fixed m ∈ Z let us look at the series

(3.7) R]m(f)(θ) :=
∑
n∈Z

f̂n(−m)einθ
(
Resz=m+2 cn(z)−1

)
Assuming m > −2, from (2.4) we get

Resz=m+2 cn(z)−1 =
−(−1)

n−m
2 2m+1(m+n

2 )!

π(n−m2 − 1)!m!
if n ∈ m+ 2 + 2Z+

and vanishes otherwise. By Stirling’s approximation again, this has magnitude asymptotically
equal to 1

π·m!n
m+1 as |n| → ∞.
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For f ∈ S −r− (N\G), we can consider the Mellin transform f̂(z) as a meromorphic function
with values in S (K) = S (S1) via the usual integral

f̂(z)(θ) =

∫ ∞
0

f(a, θ)az−1da

for Re(z) < −r. Then f̂n(−m) is the n-th Fourier coefficient of f̂(−m) ∈ S (K). As such,

f̂n(−m) decreases more rapidly than any polynomial in n. Consequently, the series (3.7) con-
verges absolutely and so do all its derivatives. Therefore R]m(f) defines a smooth function on
K = S1.

Now we can go back and take the Fourier series of (3.6) to at least formally write

(3.8) R′(f)(a, θ) = R′−r−ε(f)−
∑

m>r,m∈Z
R]m(f)(θ)a−m−2

If f has no K-types n with |n| ≥ m+ 2, then R]m(f) = 0.

Remark 3.4.2. If f lies in the image of SH(S1 × R) ↪→ S umg
− (N\G) as in the setting of

Theorem 3.3.1, then f̂n(−m) = 0 unless m = |n|, so all of the R]m(f) = 0.

Question: What space does the right hand side of (3.8) live in?
We consider R′(f) as some kind of formal series of functions (or perhaps more accurately

distributions) on N−\G = V \ 0 = R×+×S1 = A×K. Then the right hand side of (3.8) can be
considered as an element of

Ĉ+(N−\G) := C∞(N−\G) ⊗
S (K)[a−1]

S (K)[[a−1]].

By residue theorem, (3.8) is independent of ε > 0 when considered as an element of Ĉ+(N−\G).
Since S umg

− (N\G) is a colimit, we deduce:

Theorem 3.4.3. The formula (3.8) defines an operator

R′ : S umg
− (N\G)→ Ĉ+(N\G).

4. Relation to asymptotics

In this section, which is entirely expository, we return to the K-finite situation where things
are better understood. The goal is simply to spell out the relation between the inverse inter-
twining operator and asymptotics of functions on G (which is probably well-known to experts).
In other words, we want to verify an archimedean version of [BK, Theorem 7.6]. At the heart,
this is about the relation between the c-function, µ-function, and Plancherel theorem, which all
originate with Harish-Chandra.

Fix a two sided irreducible representation τ of K, i.e., two integers n,m corresponding to
K-types. We will only consider τ -spherical functions in this section.

We will follow the notation of [BK]. Let X = Mdiag\(N−\G × N\G), the space of rank 1
2× 2 matrices. Let Y = Mdiag\(N\G×N\G).

Recall that the right G-invariant measure on N\G with respect to the NMK-decomposition
is given by δ(m)−1dndmdk = |m|−2dndmdk. Here dm is the multiplicative Haar measure on
M = R×. We will use the notation dm = da

a where da stands for the additive Haar measure on
R.
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4.1. Principal series and Fourier transform. Let M (Y ) be the space of smooth functions3

on N\G×N\G that satisfy f(my1, y2) = δ(m)f(y1,m
−1y2) that are Schwartz functions modulo

M (on Y ). We have the action map

A : S (G)→M (Y ), A(f)(y1, y2) =

∫
N

f(y−12 ny1)dn, y1, y2 ∈ G.

Note this is G×G equivariant if we define the action on S (G) by ((g1, g2)f)(x) = f(g−12 xg1).
Elements of M (Y ) can be considered as operators on C∞(N\G). In this sense A does corre-
spond to the action of S (G) on C∞(N\G). For ψ ∈ C∞(N\G), we have∫

N\G
ψ(y1)A(f)(y1, y2)dy1 =

∫
G

ψ(y2g)f(g)dg.

Meanwhile, the Fourier transform of S (G) in the sense of [A] comes from considering the action
of S (G) on the principal series. So the Mellin transform of A is the Fourier transform, which
we will make precise below.

Let us fix our notation for normalized principal series to agree with [A, C]. Let σ be either

the trivial or sign representation of M/A = {±1}. If indGB denotes the un-normalized induction,
then for z ∈ C let

IGB (σ · az) = indGB(σ · az+1) = {f ∈ C∞(N\G) | f(nmg) = σ(m)|m|z+1f(g), n ∈ N,m ∈M},

where δ1/2(m) = |m| and we are identifying M with R× via α̌. Then IGB (σ · az) is a smooth,
admissible G-representation, and its contragredient is isomorphic to

IGB (σ · az)∼ ∼= IGB (σ · a−z)

and the pairing is given by

IGB (σ · az)× IGB (σ · a−z)→ C : 〈ϕ, f〉 =

∫
B\G

fϕdg.

Note that IGB (σ · az) only has K-types n such that σ(−1) = (−1)n.
Now if f ∈ S (G)τ , then A(f) ∈ M (Y )n,m and A(f) is determined by the restriction to

A× 1. Define

Â(f)(z) =

∫ ∞
0

A(f)(a, 1)az−1da,

which converges for all z ∈ C. Then Â(f)(z) corresponds to the action of f on IGB (σ · az+1)
where σ(−1) = (−1)n = (−1)m.

4.2. Eisenstein integrals. Assume from now on that σ(−1) = (−1)n = (−1)m. We can

identify IGB (σ ·az) = indKKM
(σ|KM

) = c-indKKM
(σ|KM

). Let Vn = Ceinθ denote the 1-dimensional
representation of K corresponding to K-type n. By Frobenius reciprocity,

HomK(Vn, I
G
B (σ · az)) = HomKM

(Vn, σ) = C.

The map corresponding to 1 sends 1 · einθ ∈ Vn to the function ϕn ∈ IGB (σ · az) with

ϕn(mkθ) = sign(m)n|m|z+1einθ, m ∈M = R×, kθ =

(
cos θ − sin θ
sin θ cos θ

)
3Really M (Y ) denotes sections of the analytic line bundle of measures on fibers of Y → B\G via second

projection. There is no G × G-invariant measure on Y , so the identification with smooth functions is not

canonical.
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We similarly have a function ϕ̃m ∈ IGB (σ · a−z)m. Now the matrix coefficient 〈ϕ̃m, g · ϕn〉 ∈
C∞(G) corresponds to the image of einθ ⊗ eimθ under the composition

τ → IGB (σ · az)⊗ IGB (σ · az)∼ → C∞(G)

and is given by the integral

〈ϕ̃m, g · ϕn〉 =

∫
B\G

(g · ϕn)ϕ̃m =

∫
K

ϕn(kθg)eimθdkθ =: EB(g, z)

where K has measure 1. The integral EB(g, z) agrees with the usual notion of Eisenstein
integral due to Harish-Chandra (the integral depends on τ and σ; it is simpler in the case
G = SL2(R) because τ and σ are both 1-dimensional).

We can consider the dual of A as an operator A∗ : M ′(Y )→ S ′(G). Fixing choices of Haar
measure, we identify distributions with generalized functions. Let τM denote τ |KM

. Restricting
to τ -spherical distributions, we have

A∗ : S ′(A) = S ′(M)τM = M ′(Y )τ → S ′(G)τ .

The key observation that helps to relate [BK] to the classical literature on harmonic analysis is
that the Mellin transform of A∗ is the Eisenstein integral.

For f ∈ S (G)τ∗ and φ ∈M (Y )τ , we have4

〈A∗(φ), f〉 = 〈φ,A(f)〉 =

∫
Y

φ(y)A(f)(y)dy

=

∫
K×K

∫
A

A(f)(ak1, k2)φ(ak1, k2)δ(a)−1
da

a
dk1dk2

=

∫
K×K

∫
A

∫
N

τ(1, k2)f(k−12 nak1)φ(ak1, 1)δ(a)−1dn
da

a
dk1dk2

=

∫
G

f(g)

(∫
K

φ(kθg, 1)eimθdkθ

)
dg

From these equalities and Mellin inversion we see that

Â∗(φ)(g, z) :=

∫ ∞
0

A∗(φ)(a · g, 1)az−1da = EB(g,−z − 1).

This gives another proof that Â is the Fourier transform, since Fourier transform is by definition
the adjoint of the Eisenstein integrals. 5

4.3. Asymptotics map. We can define S umg
+ (X) analogously to S umg

+ (N−\G). In fact I
believe that

S umg
+ (X) ∼= S umg

+ (N−\G) ⊗̂
S (M)

S (N\G).

We can also define M umg
− (Y ) analogously to S umg

− (N\G). Again I believe we have an identi-
fication

M umg
− (Y ) ∼= (S umg

− (N\G) ⊗̂
S (M)

S (N\G)) ⊗̂
S (Y )

M (Y ).

Now looking at just the K ×K-finite part, Corollary 3.1.6 implies that we have a topological
isomorphism

R−1⊗ 1 : M umg
− (Y )(K×K)

∼→ S umg
+ (X)(K×K).

4We have a pairing between M (Y ) and itself by integrating on Y .
5Informally: A∗(a−z+1) = EB(g,−z). Then 〈f,EB(g,−z)〉 = 〈f,A∗(a−z+1)〉 = 〈A(f), a−z+1〉Y =∫

A A(f)(a, 1)a−z+1δ(a)−1da.
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Using [BK, Theorem 7.6] as motivation, we can define a G×G-equivariant operator

Asymp : S (G)(K×K) → S umg
+ (X)(K×K)

as the composition

S (G)(K×K)
A→M (Y )(K×K) ↪→M umg

− (Y )(K×K)
R−1⊗ 1−→ S umg

+ (X)(K×K).

The operator Asymp is denoted by B∗ in [BK], and it is the dual of the smooth Bernstein
map. In the non-archimedean case, Asymp actually extends to an operator C∞(G)→ C∞(X)
so it makes sense to evaluate it on matrix coefficients of smooth G-representations. In the
archimedean case, Asymp does not extend: equivalently, the dual operator B does not send
S (X) to S (G) (if it did, this would give a proof of second adjointness, which definitely does
not hold in the archimedean setting). The failure is related to the infinite number of poles of
the c-function, which is what the previous sections tried to explain.

In the non-archimedean setting, the unique characterization of Asymp is that it is G × G-
equivariant and for a τ -spherical function f , we have

Asymp(f)(1, a) = f(a) for |a| � 1,

cf. [BK, Lemma 5.5].
In the archimedean setting, we can no longer expect a true equality, so the analogous state-

ment we will check as an analog of [BK, Theorem 7.6] is that Asymp(f) and f indeed have the
same asymptotic behavior as a→ 0.

Proposition 4.3.1. Let f ∈ S (G)τ . Then

Asymp(f)(1, a) ∼ f(a)

as a→ 0, where ∼ means that the limit of the ratio goes to 1.

The idea is that the asymptotics of Eisenstein integrals (i.e., matrix coefficients of principal
series) are given by the c-function. This goes back to Langlands and Harish-Chandra. Then
using a result of Arthur, we express any τ -spherical Schwartz function as an integral of Eisenstein
integrals. The result of Arthur is sophisticated, but I believe I am using an easy part of it.

Proof. By a continuity argument, one should be able to assume f ∈ C∞c (G)τ . Now we use some
facts from the proof of the main theorem in [A]. Recall that τ corresponds to integers n,m.
We assume σ(−1) = (−1)n = (−1)m and suppress σ from the notation.

In [A, III.2, p. 73] the Fourier transform is defined by

F (z) =

∫
G

f(g)EB(g,−z)dg, z ∈ C.

In our notation, F (z) = Â(f)(−z − 1) corresponds to the action of f on IGB (σ · a−z).
Then the proof of Arthur shows (cf. [A, p. 4]) that

(4.1) f(a) =
1

2πi

∫
Re(z)=c

µτ (z)F (z)EB|B,1(a, z)dz

for a ∈ A, a < 1 and c� 0. Here µτ is Harish-Chandra’s µ-function. (The hard part of [A] was
showing that this identity held even at a = 1.) There is a decomposition

EB(a, z) = EB|B,1(a, z) + EB|B,w0
(a, z)
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for a < 1 which is uniquely determined by an asymptotic expansion which we now recall (cf. [A,
I.4]). Recall that EB(a, z) = 〈ϕ̃m, a · ϕn〉 is the matrix coefficient of the principal series. By a
classical argument of Langlands (cf. [C, Theorem 13.1]), we have

〈ϕ̃m, a · ϕn〉 ∼ a1−z
∫
N

ϕn(w0n)dn

as a→ 0 for Re(z) > 0. In our notation,
∫
N
ϕn(w0n)dn = R(a−(z+1)einθ)(1) = cn(z + 1) so

EB(a, z) ∼ cn(z + 1)a1−z

as a→ 0. Then EB|B,1(a, z) is defined to have asymptotic approximation

EB|B,1(a, z) ∼ cn(z + 1)a1−z

as a→ 0, for any z ∈ C.
Above µτ (z) denotes the Harish-Chandra µ-function with normalization incorporated. In our

notation, µτ (z) = (cn(z + 1)cn(−z + 1))−1 = (cm(z + 1)cm(−z + 1))−1 under the assumption
(−1)n = (−1)m. Combined with (4.1), we deduce that

(4.2) f(a) ∼ 1

2πi

∫
Re(z)=c

F (z)cn(1− z)−1a1−zdz.

On the other hand, by Mellin inversion,

A(f)(a−1, 1) =
1

2πi

∫
Re(z)=c−1

Â(f)(−z)a−zdz

We want to apply R−1 in the first variable. Recall that under the identification N\G = V ∗ \ 0,
the action of α(a) scales V ∗ by a−1. Thus we can apply (3.1) to get

Asymp(f)(a, 1) =
1

2πi

∫
Re(z)=c−1

Â(f)(−z)cn(−z + 2)−1az−2dz

=
1

2πi

∫
Re(z)=c

F (z)cn(1− z)−1az−1dz.

Comparing with (4.2), we conclude that f(a) has the same asymptotics as Asymp(f)(a−1, 1) =
Asymp(f)(1, a) as a→ 0. �
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