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Abstract. Let F be a local field and n ≥ 2 an integer. We study the Radon transform as
an operator M : C+ → C− from the space of smooth K-finite functions on Fn \ {0} with

bounded support to the space of smooth K-finite functions on Fn \{0} supported away from

a neighborhood of 0. These spaces naturally arise in the theory of automorphic forms. We
prove that M is an isomorphism and provide formulas for M−1. In the real case, we show

that when K-finiteness is dropped from the definitions, the analog of M is not surjective.

1. Introduction

1.1. Some notation.

1.1.1. Let F be a local field (i.e., F is either non-Archimedean or R or C). Let G denote the
topological group GLn(F ) for an integer n ≥ 2.

Let K be the standard maximal compact subgroup of G (i.e., if F is non-Archimedean then
K = GLn(O), where O ⊂ F is the ring of integers, if F = R then K = O(n), and if F = C then
K = U(n)).

1.1.2. We fix a field E of characteristic 0; if F is Archimedean we assume that E equals C.
Unless otherwise specified, all functions will take values in E.

1.1.3. Let C denote the space of K-finite C∞ functions on Fn \ {0}. In §2.2 we define the
subspace C+ ⊂ C consisting of functions with bounded support and the subspace C− ⊂ C

consisting of functions supported away from a neighborhood of 0.

1.2. Subject of this article. In this article we consider the Radon transform as an operator

M : C+ → C−.

When F is non-Archimedean, M is known to be an isomorphism [BK]. An explicit formula for
the inverse was, however, not present in the literature. There is a ‘classical’ inversion formula
due to Černov [Ch] on the space of Schwartz functions, but its relation to M−1 is not obvious.
We formulate and prove a simple formula for M−1 in the non-Archimedean case and relate it
to Černov’s formula.

In the Archimedean case, the invertibility of M was a priori unclear due to the nonstandard
nature of the function spaces C±. We prove that M is indeed an isomorphism when F is
Archimedean and provide formulas for M−1 (here K-finiteness of C plays a crucial role).

1.3. Motivation. Our interest in the operator M originates from the classical theory of au-
tomorphic forms. Let G denote the algebraic group SL2 and N (resp. N−) the subgroup of
strictly upper (resp. lower) triangular matrices and T the maximal torus of diagonal matrices.
Then G(F )/N(F ) = F 2 \ {0} and G(F )/N−(F ) = F 2 \ {0}. The operator M is the standard
(local) intertwiner M : C+(G(F )/N(F ))→ C−(G(F )/N−(F )).

While we work only with the local field F , one gets a global analog of M by considering the
standard intertwiner M : C+(G(A)/T (F )N(A)) → C−(G(A)/T (F )N(A)) where F is a global
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field and A the adele ring. The intertwiner plays an important role in the theory of Eisenstein
series and their constant terms [Bu, §3.7]. The constant terms of automorphic forms reside in
the space C−(G(A)/T (F )N(A)), which makes it a natural space to study in this setting. The
results of this article are used to prove invertibility of the global intertwiner in [DW].

In the situation where F is a non-Archimedean local field, the operator M−1 is essentially
the same as the ‘Bernstein map’ introduced in [BK, Definition 5.3]; the precise relation between
the two is explained in [BK, Theorem 7.5]. The Bernstein map is also studied in [SV] (there it
is called the asymptotic map) in the more general context of spherical varieties.

In the real case, the Radon transform has been studied extensively by analysts ([H1], [H2],
[H3]) over slightly different function spaces.

1.4. Structure of the article. In §2 we define the subspaces C± ⊂ C and recall the definition
of the Radon transform over a general local field F .

In §3, we consider the case when F is non-Archimedean. We prove that M is invertible and
give a formula for M−1 in Theorem 3.2.6. This is done by relating the Radon transform to
the Fourier transform (§3.3-3.5). We deduce the previously known Radon inversion formula of
Černov [Ch] from Theorem 3.2.6 in §3.6.

We consider the real case in §4. The formula for M−1 is given on each K-isotypic component
of C− in Theorem 4.3.3 in terms of convolution with a distribution on R>0. The Mellin transform
of this distribution is computed in Theorem 4.4.1. The proof of the theorems is in §4.6. The
invertibility of M heavily relies on the K-finiteness assumption in the definition of C. In §4.7,
we prove (Corollary 4.7.4) that the analog of M is not surjective when K-finiteness is dropped
from the definitions.

In §5, the complex case is developed in the same way as the real case. The inversion formula
is given in Theorem 5.3.3 and the reformulation using the Mellin transform is Theorem 5.4.1.

1.5. Acknowledgments. The research was partially supported by the Department of Defense
(DoD) through the NDSEG fellowship. I am very thankful to my doctoral advisor Vladimir
Drinfeld for his continual guidance and support throughout this project.

2. Recollections on the Radon transform

2.1. The norm on Fn. Let |·| denote the normalized absolute value on F when F is non-
Archimedean and the usual absolute value1 when F is Archimedean. For a ∈ F×, set v(a) :=
− log|a|. If F is non-Archimedean log stands for logq, where q is the order of the residue field
of F . If F is Archimedean, log is understood as the natural logarithm.

We define a norm ‖·‖ on Fn as follows. If F is non-Archimedean, then ‖·‖ is the norm induced
by the standard lattice On (i.e., ‖x‖ is the maximum of the absolute values of the coordinates
of x ∈ Fn). If F is Archimedean, then ‖·‖ is induced by the standard Euclidean/Hermitian
inner product (i.e., the square root of the sum of the absolute values squared).

For x ∈ Fn \ {0}, set v(x) := − log‖x‖.

2.2. The spaces C,Cc,C±. Let C denote the space of K-finite C∞ functions on Fn\{0} (recall
that if F is non-Archimedean, C∞ means locally constant). Let Cc ⊂ C be the subspace of
compactly supported functions on Fn \ {0}.

Given a real number R, let C≤R ⊂ C denote the set of all functions ϕ ∈ C such that ϕ(ξ) 6= 0
only if v(ξ) ≤ R. Similarly, we have C≥R,C>R, and so on. Let C− denote the union of the

1If F = R, then the normalized absolute value coincides with the usual absolute value. If F = C, then the
normalized absolute value is the square of the usual absolute value.
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subspaces C≤R for all R. Let C+ denote the union of the subspaces C≥R for all R. Clearly
C− ∩ C+ = Cc and C− + C+ = C.

2.3. Radon transform. Equip F with the following Haar measure: if F is non-Archimedean
we require that mes(O) = 1; if F is Archimedean we use the usual Lebesgue measure. Let the
measure on Fn be the product of the measures on n copies of F . Fix the Haar measure on F×

to be d×t := dt
|t| .

Let f ∈ C+. The Radon transform Rf(ξ, s), for ξ ∈ Fn \ {0} and t ∈ F×, is defined by the
formula

Rf(ξ, t) =

∫
Fn

f(x)δ(ξ · x− t)dx,

where ξ ·x = ξ1x1 + · · ·+ ξnxn and δ is the delta distribution on F . The expression for Rf(ξ, t)
can also be written directly as

Rf(ξ, t) =

∫
ξ·x=t

f(x)dµξ

where dµξ is the measure on the hyperplane ξ ·x = t such that dµξdt = dx. We get an operator
M : C+ → C− by setting

(2.1) Mf(ξ) =

∫
ξ·x=1

f(x)dµξ.

Proposition 2.3.1. For any number R one has M(C≥R) ⊂ C≤−R.

Proof. Let f ∈ C≥R and ξ ∈ Fn \ {0} with v(ξ) > −R. Then ξ · x = 1 implies v(x) < R, so
f(x) = 0. Therefore Mf ∈ C≤−R. �

2.3.2. The natural action of G on Fn \ {0} induces a G-action on C by (g · f)(x) := f(g−1x)
for g ∈ G, f ∈ C, x ∈ Fn \ {0}. Then

(2.2) M(g · f) = |det g|d(gT )−1Mf

for f ∈ C+ and g ∈ G, where gT is the transpose matrix, and d = 1 if F 6= C and d = 2 if
F = C (i.e., |det g|d is the normalized absolute value of det g).

3. F non-Archimedean

In this section we consider the case when F is a non-Archimedean local field. Let O the ring
of integers, p the maximal ideal, $ a uniformizer, and Fq the residue field of F .

The main result of this section is Theorem 3.2.6. In order to state the theorem, we must
first define a new operator Aβ : C− → C+, which is done in §3.2.

3.1. K-finite functions. The action of G on Fn \ {0} is continuous and transitive. Since F
is non-Archimedean, K is an open subgroup of G, and we have the following description of
K-finite functions.

Lemma 3.1.1. A C∞ function ϕ on Fn \ {0} is K-finite if and only if there exists an open
subgroup H ⊂ K such that ϕ(hξ) = ϕ(ξ) for all h ∈ H and ξ ∈ Fn \ {0}.

Proof. Let W denote the span of the K translates of f . By assumption W is finite dimensional,
and this implies that there exists a compact open subset X of Fn \{0} such that the restriction
map W → C∞(X) is injective. Any locally constant function on X is fixed by an open subgroup
of K, which proves the lemma. �
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One may sometimes wish to consider the group SLn(F ) rather than GLn(F ) acting on
Fn \ {0}. The next lemma shows that this does not change the corresponding subspaces of
invariant functions in C.

Lemma 3.1.2. For an integer r > 0, set Kr := ker(GLn(O) → GLn(O/pr)). Then the
following properties of a function ϕ on Fn \ {0} are equivalent for n ≥ 2:

(i) ϕ is stabilized by Kr ∩ SLn(F ),
(ii) ϕ(ξ′) = ϕ(ξ) for ξ, ξ′ ∈ Fn \ {0} satisfying v(ξ′ − ξ) ≥ v(ξ) + r,
(iii) ϕ is stabilized by Kr.

Proof. Suppose that ϕ is stabilized by Kr ∩G. Take ξ, ξ′ ∈ Fn \ {0} with v(ξ′ − ξ) ≥ v(ξ) + r.

We can find a basis v1, . . . , vn of On with v1 = $−v(ξ)ξ and v2 = $−v(ξ′−ξ)(ξ′ − ξ). Let g

send v1 to v1 + $v(ξ′−ξ)−v(ξ)v2 and vk to vk for k > 1. Then g ∈ Kr ∩ G and gξ = ξ′. Thus
ϕ(ξ′) = ϕ(ξ). This proves (i) implies (ii). The other implications are easy. �

3.2. The operator Aβ : C− → C+. Let S′b(F ) denote the space of distributions β on F such
that for any open subgroup U ⊂ O×, the multiplicative U -average2 βU has compact support
and 〈βU , 1〉 = 0. Note that if 〈βU , 1〉 = 0 for some U , then it is true for all U .

3.2.1. We would like to define Aβ : C− → C+ for β ∈ S′b(F ) by

(Aβϕ)(x) =

∫
Fn

β(ξ · x)ϕ(ξ)dξ

but we must explain the meaning of the r.h.s.
Fix ϕ ∈ C− and x ∈ Fn \ {0}. For any open compact subgroup Λ ⊂ Fn let

I(Λ) :=

∫
Λ

β(ξ · x)ϕ(ξ)dξ.

Lemma 3.2.2. There exists Λ such that I(Λ′) = I(Λ) for any Λ′ containing Λ.

Proof. Choose ξ0 ∈ Fn such that ξ0 · x = 1 and v(ξ0) = −v(x). Then Fn = Fξ0 ⊕H where H
is the hyperplane {ξ | ξ · x = 0}. Lemma 3.1.1 implies that ϕ ∈ C− is fixed by the homothety
actions of an open subgroup U ⊂ O×. Therefore we can replace β by the multiplicative average
βU . Let pi ⊂ F be a fractional ideal containing the support of βU . Lemma 3.1.2(ii) implies that
ϕ(sξ0 + ξ) = ϕ(ξ) if s ∈ pi and v(ξ) ≤ v(ξ0) + i − r, where ϕ is stabilized by the congruence
subgroup Kr. Put a := r − i. Let Λ := piξ0 ⊕ {ξ ∈ H | v(ξ) ≥ −v(x)− a}.

Now suppose Λ′ is a subgroup containing Λ. Define Λ′′ = {ξ ∈ Λ′ | ξ · x ∈ pi} ⊃ Λ. Then
I(Λ′) = I(Λ′′) since pi contains the support of β. Now Λ′′ = piξ0 ⊕ (Λ′′ ∩H). Thus

I(Λ′′)− I(Λ) =

∫
ξ∈(Λ′′\Λ)∩H

∫
pi

βU (s)ϕ(sξ0 + ξ)|ξ0|dsdµx.

Note that ξ ∈ (Λ′′ \Λ)∩H satisfies v(ξ) < −v(x)−a and hence ϕ(sξ0 +ξ) = ϕ(ξ). We conclude
that I(Λ′′) = I(Λ) since 〈βU , 1〉 = 0. �

3.2.3. Put (Aβϕ)(x) := I(Λ) where Λ is as in Lemma 3.2.2.

Corollary 3.2.4. Let R be any number. If ϕ ∈ C≤−R, then Aβϕ ∈ C≥R−a, where a is an
integer depending only on β and the stabilizer of ϕ in G.

2The multiplicative U -average βU is defined by βU (t) = 1
mes(U)

∫
U β(ut)d×u.
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Proof. We use the notation from the proof of Lemma 3.2.2. Note that the choice of a is
independent of x ∈ Fn \{0}. It follows from our definition above and the proof of Lemma 3.2.2
that

(Aβϕ)(x) =

∫
ξ∈H

v(ξ)≥−v(x)−a

∫
pi

βU (t)ϕ(sξ0 + ξ)|ξ0|dsdµx,

which is zero if v(x) < R− a. �

Thus we have defined an operator Aβ : C− → C+.

Remark 3.2.5. For ϕ ∈ C− we have Aβ(gϕ) = |det g|(gT )−1(Aβϕ) where gT is the transpose.
In other words, the operator C− → {measures on (Fn)∗ \ {0}} defined by ϕ 7→ (Aβϕ)dx is
equivariant with respect to the action of G.

The goal of this section is to prove the following.

Theorem 3.2.6. The operator M : C+ → C− is an isomorphism. The inverse of M is Aβ,
where β is the compactly supported distribution on F equal to

1− qn−1

1− q−n
(|s− 1|−n − |s|−n).

The distributions |s− 1|−n and |s|−n are defined as in [GGP, Ch. 2, §2.3], i.e.,

〈|s|−n, f〉 =

∫
F

|s|−n(f(s)− f(0))ds

for a test function f ∈ C∞c (F ).
We prove Theorem 3.2.6 in §3.5.

Remark 3.2.7. Let β be as defined in Theorem 3.2.6. Then the integral of β along any compact

open subset of F has value in Z[ 1
q ]. This is not true for the distribution 1−qn−1

1−q−n |s|−n.

3.3. Fourier transform. We assume without loss of generality that E contains all roots of
unity. Choose a nontrivial additive character ψ of F which is trivial on O but nontrivial on
$−1O. The Haar measure we chose for F is self-dual with respect to ψ. Note that ψ ∈ S′b(F ).
Define the Fourier transform F : C− → C+ by

F := Aψ.

On the other hand, we also have an operator F′ : C+ → C− defined by

(3.1) F′f(ξ) =

∫
Fn

f(x)(ψ(−ξ · x)− 1)dx.

Moreover for any number R, one observes that F′(C≥R) ⊂ C<−R.

Proposition 3.3.1. The operators F and F′ are mutually inverse.

Proof. Proposition 2.3.1 and Corollary 3.2.4 imply that FF′(C≥R) ⊂ C≥R+a and F′F(C≤−R) ⊂
C≤−R−a on functions stabilized by Kr for a fixed r > 0. As a consequence, it is enough to check
the equalities FF′ = id and F′F = id on the subspace Cc = C+ ∩ C−.

Let f ∈ Cc. Then the usual Fourier transform f̂ is a compactly supported function on Fn.

Note that F′f(ξ) = f̂(ξ)− f̂(0). By the definition of F, we have

FF′f(x) =

∫
Λ

(f̂(ξ)− f̂(0))ψ(ξ · x)dξ
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for any sufficiently large open compact subgroup Λ ⊂ Fn. Since f̂ is compactly supported, the

usual Fourier inversion formula implies that
∫

Λ
f̂(ξ)ψ(ξ · x)dξ = f(x) if Λ contains the support

of f̂ . Since x is nonzero,
∫

Λ
ψ(ξ · x)dξ = 0 for Λ large enough. Therefore FF′f = f .

In the other direction, let ϕ ∈ Cc. Then Fϕ(x) = ϕ̂(−x) is compactly supported on Fn.
Again the Fourier inversion formula implies that

F′Fϕ(ξ) =

∫
Fn

ϕ̂(x)ψ(−ξ · x)dx−
∫
Fn

ϕ̂(x)dx = ϕ(ξ)− ϕ(0) = ϕ(ξ). �

3.4. Actions on C±. For any real number a, let A≤a be the space of generalized functions α
on F× whose support is contained in {t ∈ F× | v(t) ≤ a}. Let A− denote the union of all A≤a
for all a. Then A− becomes an algebra under convolution using the measure d×t.

3.4.1. We have an action of A− on C− defined by

(α ∗ ϕ)(ξ) =

∫
F×

α(t)ϕ(t−1ξ)d×t

for α ∈ A−, ϕ ∈ C−, and ξ ∈ Fn \ {0}. One similarly defines A≥a, A+, and an action of A+ on
C+. There is an isomorphism σ : A≤a → A≥−a defined by

σ(α)(t) = α(t−1)|t|−n.

3.4.2. We would like to define a multiplicative convolution action of A+ on S′b(F ) by

(α̃ ∗ β)(s) =

∫
F×

α̃(t)β(t−1s)d×t

for α̃ ∈ A+ and β ∈ S′b(F ), but we must explain the meaning of this formula as a distribution
on F . Let S(F ) denote the space of locally constant, compactly supported functions on F .

Lemma 3.4.3. Let f ∈ S(F ) and t ∈ F×. Then
∫
F
β(t−1s)f(s)ds = 0 if v(t) is sufficiently

large.

Proof. Since f ∈ S(F ), there exists an open subgroup U ⊂ O× that stabilizes f under homoth-
eties. Thus we can replace β by the multiplicative average βU , which is compactly supported.
Then

∫
F
β(t−1s)f(s)ds = |t|

∫
supp βU

βU (s)f(ts)ds. If v(t) is large enough such that f is constant

on t(suppβU ), the integral vanishes since 〈βU , 1〉 = 0. �

Define the distribution α̃ ∗ β ∈ S′b(F ) by putting the value at f ∈ S(F ) to be

〈α̃ ∗ β, f〉 =

∫
F×

α̃(t)

(∫
F

β(t−1s)f(s)ds

)
d×t,

which is well-defined by Lemma 3.4.3 and the fact that α̃ ∈ A+.

Remark 3.4.4. Observe that A≤a ∗ C≤R ⊂ C≤R+a and A≥a ∗ C≥R ⊂ C≥R+a for any numbers a
and R. Moreover if α̃ ∈ A≥a and β ∈ S′b(F ) has support contained in pi, then the support of
α̃ ∗ β is contained in pa+i.

Remark 3.4.5. The convolution action of A+ on S′b(F ) is indeed an action, i.e., α̃1 ∗ (α̃2 ∗ β) =
(α̃1∗α̃2)∗β for α̃1, α̃2 ∈ A+ and β ∈ S′b(F ). One sees this by restricting β to F× and identifying
A+ with the space of distributions on F× with bounded support using the measure d×t.

Lemma 3.4.6. Let α ∈ A−, β ∈ S′b(F ), and ϕ ∈ C−. Then

Aβ(α ∗ ϕ) = σ(α) ∗Aβϕ = Aσ(α)∗β(ϕ)
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Proof. By Corollary 3.2.4 and Remark 3.4.4, we reduce to the case where α ∈ A− ∩ A+ and
ϕ ∈ Cc. Consequently, α ∗ ϕ ∈ Cc. Fix x ∈ Fn \ {0}. We have

Aβ(α ∗ ϕ)(x) =

∫
Fn

β(ξ · x)

∫
F×

α(t)ϕ(t−1ξ)d×tdξ =

∫
F×

α(t)|t|n
∫
Fn

β(ξ · tx)ϕ(ξ)dξd×t.

by a change of variables. Substituting t with t−1 in the last integral shows that Aβ(α ∗ ϕ) =
σ(α) ∗Aβϕ. One observes that σ(α) ∗Aβϕ = Aσ(α)∗β(ϕ) essentially by definition. �

Remark 3.4.7. One easily checks that if α ∈ A− and f ∈ C+, then M(σ(α) ∗ f) = α ∗Mf .

3.5. Relation between Radon and Fourier transforms. Note that F′ and M are both
operators C+ → C−. Comparing formulas (2.1) and (3.1), we deduce the formula

(3.2) F′f = α ∗Mf

where f ∈ C+ and α(t) := ψ(−t)− 1 for t ∈ F×.
Let β be the distribution defined in Theorem 3.2.6.

Lemma 3.5.1. We have an equality of distributions

β = σ(α) ∗ ψ.

Proof. Let f ∈ S(F ). Then 〈σ(α)∗ψ, f〉 =
∫
F×
|t|n(ψ(t)−1)

(∫
F
f(s)ψ(−ts)ds

)
d×t. This is the

value at f of the Fourier transform of |t|n−1(ψ(t)− 1) considered as a distribution on F . It is

well-known [GGP, Ch. 2, §2.5-6] that the Fourier transform of |t|n−1 is 1−qn−1

1−q−n |s|−n. Therefore

we conclude that σ(α) ∗ ψ = β. �

Observe that F = Aψ and Aβ are both operators C− → C+. Let ϕ ∈ C−. From Lemmas 3.4.6
and 3.5.1, we deduce the equality

(3.3) Aβϕ = σ(α) ∗ Fϕ.

Proof of Theorem 3.2.6. We deduce from (3.2) and Proposition 3.3.1 that M has a left inverse
sending ϕ ∈ C− to F(α∗ϕ). Lemma 3.4.6 and (3.3) together say that F(α∗ϕ) = Aβϕ. Applying
M to (3.3) and using Remark 3.4.7, we see that MAβ = F′F = id. Therefore Aβ is both left
and right inverse to M . �

3.6. Comparison with Černov’s Radon inversion formula. Let f be a Schwartz (i.e.,
compactly supported C∞) function on Fn. Recall that the Radon transform Rf(ξ, s) is a C∞

function on (Fn \ {0})×F (in particular it is defined at s = 0), and Rf(ξ, s) = 0 if ‖sξ‖−1 is
sufficiently large. The following “non-archimedean Cavalieri’s condition” is also well-known:

Lemma 3.6.1. The integral
∫
F
Rf(ξ, s)ds does not depend on ξ.

Proof. The integral of f over Fn along a pencil of parallel hyperplanes does not depend on the
direction of the pencil. �

3.6.2. It was previously known ([Ch, Theorem 5], [Koc, formula (8)]) that the following inversion
formula holds:

(3.4) f(x) =
1− qn−1

(1− q−1)(1− q−n)

∫
‖η‖=1

〈|s|−n,Rf(η, s+ η · x)〉dη

where x ∈ Fn \ {0} and η ranges over norm 1 vectors in Fn.
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3.6.3. We will deduce formula (3.4) from Theorem 3.2.6. Since f is compactly supported on
Fn, we have f ∈ C+ and Theorem 3.2.6 implies that

f(x) = AβMf(x) =

∫
v(ξ)≥R

β(ξ · x)Mf(ξ)dξ

for x ∈ Fn \ {0} and R a sufficiently large number. We can write ξ = t−1η where t ∈ F× and
η ∈ Fn with ‖η‖ = 1. This gives the equality

f(x) =

∫
v(t)≤−R

∫
‖η‖=1

β(t−1η · x)Mf(t−1η)|t|−ndηd×t.

Homogeneity of Rf implies that |t|−1Mf(t−1η) = Rf(η, t). Therefore we have the formula

(3.5) f(x) =
1− qn−1

(1− q−1)(1− q−n)

∫
v(t)≤−R

∫
‖η‖=1

(|η · x− t|−n − |η · x|−n)Rf(η, t)dηdt.

Choose η0 ∈ Fn with v(η0) = −v(x) and η0 · x = 1. Then η · x − t = (η − tη0) · x. Note that
if v(t) > v(x), then translation by tη0 preserves the unit sphere of norm 1 vectors. Moreover
smoothness of Rf implies that Rf(η + tη0, t) = Rf(η, t) if v(t) is sufficiently large. Therefore
the inner integral of (3.5) is zero if v(t) is sufficiently large. Thus we may integrate over all
t ∈ F and switch the order of integration.

Lemma 3.6.4. The integral
∫
‖η‖=1

|η · x|−ndη equals zero.

Proof. Using the G-action, we may assume that x = (1, 0, . . . , 0). Then η · x = η1, the first
coordinate of η. One sees that

∫
‖η‖=1

|η1|−ndη = (1− q−1) +
∫
p
|η1|−ndη1(1− q1−n). A simple

calculation shows that the latter expression vanishes. �

Lemmas 3.6.1 and 3.6.4 imply that
∫
‖η‖=1

|η · x|−n
∫
F
Rf(η, t)dtdη = 0, so the |η · x|−n term

in (3.5) vanishes. After a change of variables s = t− η · x, the formula (3.5) becomes equal to
Černov’s formula (3.4).

4. F real

In this section we prove the invertibility ofM when F = R. Recall that in this caseK = O(n).
The inversion formula is given in Theorem 4.3.3, and a reformulation using the Mellin transform
is given in Theorem 4.4.1. The K-finiteness of C plays a crucial role in the proofs, so we begin
by recalling the classification of the K-isotypic components of C.

The non-K-finite situation is considered in §4.7.

4.1. Spherical harmonics. Let Sn−1 denote the unit sphere centered at the origin in Rn,
which has a natural action by O(n). Let C(Sn−1) be the space of smooth K-finite functions on
Sn−1. For a nonnegative integer k, let Hk denote the space of harmonic polynomials on Rn of
degree k.

Theorem 4.1.1 ([H2, Theorem I.3.1], [JW, Theorem 3.1], [Kos]). Let Hk|Sn−1 denote the
space of harmonic polynomials restricted to Sn−1. Then

(i) the restriction map Hk → Hk|Sn−1 is an isomorphism,
(ii) C(Sn−1) =

⊕
k≥0H

k|Sn−1 as O(n)-representations,

(iii) the O(n)-representations Hk are irreducible and not isomorphic to each other.
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4.2. Decomposing C into K-isotypes. We have a decomposition Rn \ {0} = R>0×Sn−1,
with O(n) acting on the Sn−1 component. Let C(R>0) denote the space of smooth functions
on R>0 and define the subspaces C±(R>0),Cc(R>0) as in §2.2.

Theorem 4.1.1 implies that there is a decomposition

C =
⊕
k≥0

C(R>0)⊗Hk.

For u ∈ C(R>0) and Y ∈ Hk, we define u⊗Y ∈ C by (u⊗Y )(x) := u(|x|) · Y ( x
|x| ).

4.3. Radon inversion formula.

4.3.1. We have an isomorphism Inv : C− → C+ defined by

(Invϕ)(x) = ‖x‖−nϕ
(

x

‖x‖2

)
.

Set M̃ := Inv−1 ◦M . Consider R>0 as a subgroup of diagonal matrices in G. Then it follows

from (2.2) that M̃ is a K ×R>0 equivariant operator from C+ to C+.

4.3.2. Let A denote the space of distributions on R>0 supported on (0, 1]. Then A is an algebra
under the convolution product ∗ induced by the multiplication operation on R>0. The action
of R>0 on C+ induces an action of A.

Theorem 4.3.3. The operator M : C+ → C− is an isomorphism. For ϕ ∈ C−(R>0)⊗Hk, the
inverse M−1 : C− → C+ is given by the formula

M−1ϕ = βk ∗ Inv(ϕ)

where βk is the distribution on R>0 defined by

(4.1) βk(t) =
1

2n+k−2π
n−1
2 Γ(n+2k−1

2 )
tk−1

(
− d

dt

)n+k−1 (
t−k+1(1− t2)

n+2k−3
2

+

)
dt.

The derivative d
dt is applied in the sense of generalized functions. For λ ∈ C with Re(λ) > −1,

the generalized function (1 − t)λ+ is defined by 〈(1 − t)λ+, f0(t)dt〉 =
∫ 1

0
(1 − t)λf0(t)dt for f0 ∈

Cc(R>0). This generalized function can be analytically continued to all λ ∈ C not equal to a
negative integer [GS, §I.3.2]. We define (1− t2)λ+ = (1 + t)λ · (1− t)λ+.

Corollary 4.3.4. For any number R one has M−1(C≤−R) ⊂ C≥R.

Proof. Observe that βk is supported on (0, 1] for all k. �

4.4. A formula for M̃ in terms of convolution. For t ∈ (−1, 1), define At : C(Sn−1) →
C(Sn−1) such that (Atf)(x) is the average value of f on the (n−2)-sphere {ω ∈ Sn−1 | ω ·x = t}.
Then At is O(n)-equivariant, so by Schur’s lemma it acts on Hk|Sn−1 by a scalar ak(t). Since
Hk is stable under complex conjugation, ak(t) is real valued. One observes that ak is a smooth
function on (−1, 1), |ak(t)| ≤ 1 for all t ∈ (−1, 1), and limt→1 ak(t) = 1.

Suppose that f ∈ C(R>0)⊗Hk and there exists C > 0 and σ > n − 1 such that |f(x)| ≤
C‖x‖−σ for all x with ‖x‖ ≥ 1. Since the intersection of Sn−1 with the hyperplane {ω | ω·x = t}
has radius (1− t2)1/2 for a unit vector x, we deduce that

(4.2) M̃f = αk ∗ f

where αk is the measure mes(Sn−2) · t−n · ak(t)(1− t2)
n−3
2 dt on the interval (0, 1) extended by

zero to the whole R>0. The convolution αk ∗ f is well-defined because of the bound on |f(x)|,
and mes(Sn−2) denotes the surface area of the (n − 2)-sphere. In fact, [H1, Proposition 2.11]



10 JONATHAN WANG

says that ak(t) is the scalar multiple of the Gegenbauer polynomial C
( n−2

2 )

k (t) normalized by
ak(1) = 1.

The Mellin transform Mαk is defined for s ∈ C by integrating ts against αk if Re(s) > n−1.

Theorem 4.4.1. The distribution αk is invertible in A. The inverse βk is defined by (4.1).
The Mellin transforms are given by

(4.3) Mβk(s) =
1

Mαk(s)
= 21−n−kπ

1−n
2

Γ(s+ k)

Γ(s− n+ 1)
·

Γ( s−n−k2 + 1)

Γ( s+k+1
2 )

.

Theorem 4.4.1 implies Theorem 4.3.3.

4.5. Relation to Fourier transform. Let S(Rn) denote the space of Schwartz functions on
Rn and S′(Rn) the dual space of tempered distributions on Rn. The Fourier transform is defined
for an integrable function f on Rn by

Ff(ξ) =

∫
Rn

f(x)e−2πiξ·xdx.

This definition can be extended [SW, §I.3] to the space of tempered distributions. After this
extension, F becomes an isomorphism F : S′(Rn)→ S′(Rn) .

Let F : S′(R)→ S′(R) denote the 1-dimensional Fourier transform. For f ∈ S(Rn), one gets
the Fourier transform from the Radon transform by

(4.4) Ff(rω) = F (Rf(ω, t))(r)

where F is the Fourier transform with respect to the t variable, r ∈ R, and ω ∈ Sn−1 is a unit
vector.

Lemma 4.5.1. Let f be a locally integrable function on Rn for which there exist C > 0 and
σ > n− 1 such that |f(x)| ≤ C‖x‖−σ for all x with ‖x‖ ≥ 1. Then:

(i) Rf is a locally integrable function on Sn−1×R.
(ii) Rf(ω, t) is bounded for |t| ≥ 1.
(iii) The right hand side of (4.4) is well-defined as a generalized function on R×Sn−1.
(iv) Equation (4.4) holds as an equality between generalized functions on R>0×Sn−1.

Proof. Since Rf is defined by integrating f on a hyperplane of dimension n − 1, the bound
on |f(x)| implies that Rf is well-defined on Sn−1×R. One also uses this bound and local
integrability of f to deduce that Rf is locally integrable. If ω ∈ Sn−1 and t ∈ R with |t| ≥ 1,
then integrating in the radial direction on the hyperplane ω · x = t, we see that |Rf(ω, t)|
is bounded by a constant times

∫∞
0

(r2 + t2)−σ/2rn−2dr, which is equal to a constant times

|t|n−1−σ. This proves (ii). Property (iii) follows immediately from properties (i)-(ii).
Let ϕ be a compactly supported smooth function on Rn \ {0} = R>0×Sn−1. Consider f as

a tempered distribution on Rn. By the definition of Ff ,

(4.5)

∫
R>0×Sn−1

Ff(rω)ϕ(rω)rn−1drdω =

∫
Rn

f(x)

∫
R>0×Sn−1

ϕ(rω)e−2πir(ω·x)rn−1drdωdx.

Since t 7→
∫
R>0

ϕ(rω)e−2πirtrn−1dr is a Schwartz function on R, we deduce from the decompo-

sition dx = dµωdt and property (ii) applied to |f | that the integral∫
Sn−1

∫
Rn

∣∣∣∣f(x)

∫
R>0

ϕ(rω)e−2πir(ω·x)rn−1dr

∣∣∣∣ dxdω
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converges. Then the Fubini-Tonelli theorem implies that (4.5) is equal to∫
Sn−1

∫
R

∫
R>0

Rf(ω, t)e−2πirtϕ(rω)rn−1drdtdω,

which proves (iv). �

4.6. Proof of Theorem 4.4.1. Let Y ∈ Hk and define f(x) = ‖x‖−s · Y ( x
‖x‖ ) for s ∈ C. If

n−1 < Re(s) < n, then f is locally integrable on Rn and satisfies the hypothesis of Lemma 4.5.1.
Moreover by (4.2) and homogeneity of f we see that

Rf(ω, t) = sgn(t)k|t|n−1−sMf(ω) = sgn(t)k|t|n−1−sMαk(s)Y (ω)

as a locally integrable function on Sn−1×R. Then Lemma 4.5.1 implies that

Ff(rω) = F (sgn(t)k|t|n−1−s)(r)Mαk(s)Y (ω).

It is well-known [GS, §II.2.3] that

F (sgn(t)k|t|n−1−s)(r) = ik(2π)s−n+1 sin(π (s−n−k+1)
2 )

π
Γ(n− s) sgn(r)k|r|s−n.

On the other hand, one can compute the Fourier transform of f directly:

Theorem 4.6.1 ([SW, Theorem IV.4.1]). If 0 < Re(s) < n, then Ff(x) = γ‖x‖s−nY ( x
‖x‖ ),

where γ = i−kπs−
n
2 Γ(n+k−s

2 )/Γ( s+k2 ).

Comparing constant multiples in the two formulas for Ff above and applying Euler’s reflection
formula, we have

Mαk(s) = 2n−1−sπn/2−1 Γ(n+k−s
2 )Γ( s−n−k+1

2 )Γ(n+k+1−s
2 )

Γ( s+k2 )Γ(n− s)
for n − 1 < Re(s) < n. By analytic continuation, we deduce the equality for all s ∈ C away
from poles. The duplication formula for the Γ-function implies that

(4.6) Mαk(s) = 2n+k−1π
n−1
2

Γ(s− n+ 1)

Γ(s+ k)
·

Γ( s+k+1
2 )

Γ( s−n−k2 + 1)
,

as stated in Theorem 4.4.1. To finish the proof of Theorem 4.4.1, it remains to show that
(Mβk)−1 equals the right hand side of (4.6). By considering the Beta function we see that
Γ( s−n−k2 + 1)/Γ( s+k+1

2 ) is the Mellin transform of ν(t)dt, where

(4.7) ν(t) =
2

Γ(n+2k−1
2 )

t1−n−k(1− t2)
n+2k−3

2
+ .

The generalized function (1− t2)
n+2k−3

2
+ is defined in the paragraph after Theorem 4.3.3. Mul-

tiplying the right hand side of (4.7) by Γ(s + k)/Γ(s − n + 1) = (s − n + 1) · · · (s + k − 1)
amounts to replacing ν by Lk(ν), where Lk := (− d

dt · t − n + 1) · · · (− d
dt · t + k − 1). Observe

that Lk = tk−1(− d
dt )

n+k−1tn. Therefore Mβk = (Mαk)−1, where βk is defined by (4.1). This
proves Theorem 4.4.1.

In the case n = 2, the formula (4.6) is well-known (cf. [Wal, Lemma 7.17], [Bu, Proposition
2.6.3]).

4.7. The non-K-finite situation. In this subsection we consider the situation where we re-
move K-finiteness from the definitions of C+ and C−. Let C+ be the space of smooth functions
on Rn \ {0} with bounded support, and let C− be the space of smooth functions on (Rn)∗ \ {0}
supported away from a neighborhood of 0.
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4.7.1. We have the operator M : C+ → C− defined by

M f(ξ) =

∫
〈ξ,x〉=1

f(x)dµξ

(cf. formula (2.1)). One can deduce that M is injective from the injectivity of M : C+ → C−.
However we will show below that M is not surjective, and hence not an isomorphism.

4.7.2. Let f ∈ C+. Define Cf = supp(f)∪{0}, which is a compact subset of Rn. Let Ĉf denote
its convex hull.

Let C ⊂ Rn be a convex set containing 0. Define C∗ ⊂ (Rn)∗ to be the set of ξ such that
the hyperplane 〈ξ, x〉 = 1 is disjoint from C. By convexity,

C∗ = {ξ | 〈ξ, x〉 < 1 for all x ∈ C}.

Observe that C∗ is a convex set3 containing 0. If Č ⊂ (Rn)∗ is a convex set containing 0,
one similarly defines the dual Č∗ ⊂ Rn. Taking duals gives mutually inverse maps between
the collection of compact convex subsets of Rn containing 0 and the collection of open convex
subsets of (Rn)∗ containing 0.

Proposition 4.7.3. The connected component of (Rn)∗ \ supp(M f) containing 0 is equal to

(Ĉf )∗. In particular, it is convex.

Corollary 4.7.4. The operator M : C+ → C− is not surjective.

Lemma 4.7.5. Let ξ0 ∈ (Rn)∗ \ {0}. If M f vanishes on a neighborhood of the segment
[0, ξ0] := {tξ0 | 0 ≤ t ≤ 1}, then f vanishes on the half-space 〈ξ0, x〉 ≥ 1.

Proof. By replacing f by a compactly supported function that is equal to f outside of a small
neighborhood of 0, we may assume that f is compactly supported. There exists an open convex
neighborhood Č of [0, ξ0] such that M f vanishes on Č. Then C = Č∗ is a compact convex
subset of Rn and C∗ = Č, so the integral of f along any hyperplane disjoint from C vanishes.
Therefore [H3, Corollary 2.8] implies that supp f ⊂ C. Since ξ0 ∈ Č, one sees that C is
contained in the half-space 〈ξ0, x〉 < 1. �

We have the support function H : (Rn)∗ → R associated to Cf , which is defined by

H(ξ) = sup{〈ξ, x〉 | x ∈ Cf}.

For ξ 6= 0, the set {x | 〈ξ, x〉 = H(ξ)} is a supporting hyperplane of Ĉf . The function H

uniquely determines the compact convex set Ĉf , and (Ĉf )∗ = H−1(R<1).

Proof of Proposition 4.7.3. It is clear that H−1(R<1) is an open subset of (Rn)∗ \ supp(M f).
Note that since supp(M f) is closed, Lemma 4.7.5 implies that if H(ξ) = 1 then ξ ∈ supp(M f).

Thus (Ĉf )∗ = H−1(R<1) is also closed in (Rn)∗ \ supp(M f). �

5. F complex

In this section we prove the invertibility ofM when F = C. Recall that in this caseK = U(n).
The inversion formula is given in Theorem 5.3.3, and a reformulation using the Mellin transform
is given in Theorem 5.4.1. The K-finiteness of C plays a crucial role in the proofs, so we begin
by recalling the classification of the K-isotypic components of C.

3C∗ is called [Ca] the dual (polar) set of C. Note that if C is compact, then C∗ is open. If 0 is an interior
point of C, then C∗ is bounded.
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5.1. Spherical harmonics. Let S2n−1 denote unit sphere of norm 1 vectors in Cn = R2n,
which has a natural action by U(n). Let C(S2n−1) be the space of smooth K-finite functions on
S2n−1. For nonnegative integers p, q, let Hp,q denote the homogeneous polynomials of degree
p+ q on R2n that are harmonic and satisfy

Y (λz1, . . . , λzn) = λpλ
q
Y (z1, . . . , zn)

for λ ∈ C, (z1, . . . , zn) ∈ Cn = R2n.

Theorem 5.1.1 ([JW, Theorem 3.1], [Kos]). Let Hp,q|S2n−1 denote the space of harmonic
polynomials restricted to S2n−1. Then

(i) C(S2n−1) =
⊕

p,q≥0H
p,q|S2n−1 as U(n)-representations,

(ii) the U(n)-representations Hp,q are irreducible and not isomorphic to each other.

5.2. Decomposing C into K-isotypes. We have a decomposition Cn \ {0} = R>0×S2n−1,
with O(2n) (and hence U(n)) acting on the S2n−1 component. Let C(R>0) denote the space of
smooth functions on R>0 and define the subspaces C±(R>0),Cc(R>0) as in §2.2.

Theorem 5.1.1 implies that there is a decomposition

C =
⊕
p,q≥0

C(R>0)⊗Hp,q.

For u ∈ C(R>0) and Y ∈ Hp,q, we define u⊗Y ∈ C by (u⊗Y )(x) := u(‖x‖) · Y ( x
‖x‖ ).

5.3. Radon inversion formula.

5.3.1. We have an isomorphism Inv : C− → C+ defined by

(Invϕ)(x) = ‖x‖−2nϕ

(
x

‖x‖2

)
where x is coordinate-wise conjugation. Set M̃ := Inv−1 ◦M . Consider R>0 as a subgroup of

diagonal matrices in G. Then it follows from (2.2) that M̃ is a K ×R>0 equivariant operator
from C+ to C+.

5.3.2. Let A be the space of distributions on R>0 supported on (0, 1] (see §4.3.2). The action
of R>0 on C+ induces an action of A.

Theorem 5.3.3. The operator M : C+ → C− is an isomorphism. For ϕ ∈ C−(R>0)⊗Hp,q,
the inverse M−1 : C− → C+ is given by the formula

M−1ϕ = βp,q ∗ Inv(ϕ)

where βp,q is the distribution on R>0 defined by

(5.1) βp,q(t) =
1

2n+m−2πn−1Γ(m)

n+m−1∏
j=1

(
− d

dt
· t+ p+ q − 2j

)(
t−p−q−2n+1(1− t2)m−1

+

)
dt

where m = min(p, q).

The derivative d
dt is applied in the sense of generalized functions. The generalized function

(1−t2)λ+ is defined by analytic continuation for λ ∈ C (see the paragraph following the statement

of Theorem 4.3.3). In particular, the regularization of 2
Γ(m) (1− t2)m−1

+ dt at m = 0 is equal to

δ(1− t).

Corollary 5.3.4. For any number R one has M−1(C≤−R) ⊂ C≥R.

Proof. Observe that βp,q is supported on (0, 1] for all p, q. �
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5.4. A formula for M̃ in terms of convolution. We consider the dot product on S2n−1 ⊂ Cn
induced by the dot product on Cn. For t ∈ (−1, 1), define At : C(S2n−1)→ C(S2n−1) such that
(Atf)(x) is the average value of f on the (2n − 3)-sphere {ω ∈ S2n−1 | ω · x = t}. Then At is
U(n)-equivariant, so by Schur’s lemma it acts on Hp,q|S2n−1 by a scalar ap,q(t). One observes
that ap,q is a smooth function on (−1, 1), |ap,q(t)| ≤ 1 for all t ∈ (−1, 1), and limt→1 ap,q(t) = 1.

Suppose that f ∈ C(R>0)⊗Hp,q and there exist C > 0 and σ > n − 1 such that |f(x)| ≤
C‖x‖−2σ for all x with ‖x‖ ≥ 1. One can deduce as in the real case that

(5.2) M̃f = αp,q ∗ f

where αp,q is the measure mes(S2n−3) · t1−2n ·ap,q(t)(1− t2)n−2dt on the interval (0, 1) extended
by zero to the whole R>0. The convolution αp,q ∗ f is well-defined due to the bound on |f(x)|,
and mes(S2n−3) denotes the surface area of the (2n− 3)-sphere. By considering zonal spherical
functions, one can check [Wat, Lemma 1.2] that ap,q(t) is the scalar multiple of the Jacobi

polynomial P
(n−2,|p−q|)
min(p,q) (2t2 − 1) normalized by ap,q(1) = 1.

The Mellin transform Mαp,q is defined for s ∈ C by integrating ts against αp,q if Re(s) >
2n− 2.

Theorem 5.4.1. The distribution αp,q is invertible in A. The inverse βp,q is defined by (5.1).
The Mellin transforms are given by

(5.3) Mβp,q(s) =
1

Mαp,q(s)
= π1−n Γ( s+p+q2 )

Γ( s+|p−q|2 − n+ 1)
·

Γ( s−p−q2 − n+ 1)

Γ( s−|p−q|2 − n+ 1)
.

Theorem 5.4.1 implies Theorem 5.3.3.

5.5. Relation to the Fourier transform. Let S(Cn) denote the space of Schwartz functions
on Cn and S′(Cn) the dual space of tempered distributions on Cn. The Fourier transform is
defined for an integrable function f on Cn by

Ff(ξ) =

∫
Cn

f(x)e−2πiRe(ξ·x)dx.

This definition coincides with the one from §4.5 by identifying Cn = R2n. The Fourier transform
can be extended to an isomorphism of tempered distributions F : S′(Cn)→ S′(Cn) .

Let F : S′(C) → S′(C) denote the Fourier transform over C. For f ∈ S(Cn), one gets Ff
from the Radon transform by

(5.4) Ff(rω) = F (Rf(ω, t))(r)

where F is the Fourier transform with respect to the t variable, r ∈ C, and ω ∈ S2n−1 is a unit
vector. We have the following complex analog of Lemma 4.5.1, which is proved in exactly the
same way.

Lemma 5.5.1. Let f be a locally integrable function on Cn for which there exist C > 0 and
σ > n− 1 such that |f(x)| ≤ C‖x‖−2σ for all x with ‖x‖ ≥ 1. Then:

(i) Rf is a locally integrable function on S2n−1×C.
(ii) Rf(ω, t) is bounded for |t| ≥ 1.
(iii) The right hand side of (5.4) is well-defined as a generalized function on C×S2n−1.
(iv) Equation (5.4) holds as an equality between generalized functions on R>0×S2n−1.
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5.6. Proof of Theorem 5.4.1. Let Y ∈ Hp,q and define f(x) = ‖x‖−s · Y ( x
‖x‖ ) for s ∈ C.

If 2n − 2 < Re(s) < 2n, then f is locally integrable on Cn and satisfies the hypothesis of
Lemma 5.5.1. Moreover by (5.2) and homogeneity of f we see that

Rf(ω, t) = tpt
q|t|2n−2−p−q−sM̃f(ω) = tpt

q|t|2n−2−p−q−sMαp,q(s)Y (ω)

as a locally integrable function on S2n−1×C. Then Lemma 5.5.1 implies that

Ff(rω) = F (tpt
q|t|2n−2−p−q−s)(r)Mαp,q(s)Y (ω)

as generalized functions on R>0×S2n−1.

Lemma 5.6.1. If 2n− 2 < Re(s) < 2n, then

F (tpt
q|t|2n−2−p−q−s)(r) = πs−2n+1i−|p−q|

Γ( 2n+|p−q|−s
2 )

Γ( s−2n+2+|p−q|
2 )

rprq|r|s−2n−p−q

as locally integrable functions on C.

Proof. Apply Theorem 4.6.1 for n = 2, k = |p − q|, and Y (x1, x2) = (x1 + ix2)p−q if p ≥ q or
Y (x1, x2) = (x1 − ix2)q−p if p ≤ q. �

Alternatively, we can use Theorem 4.6.1 to find that Ff(x) = γ‖x‖s−2nY ( x
‖x‖ ), where γ =

i−p−qπs−nΓ( 2n+p+q−s
2 )/Γ( s+p+q2 ). Comparing the two formulas we have derived for Ff and

applying Euler’s reflection formula, we conclude that

(5.5) Mαp,q(s) = πn−1 Γ( s+|p−q|2 − n+ 1)Γ( s−|p−q|2 − n+ 1)

Γ( s+p+q2 )Γ( s−p−q2 − n+ 1)
,

as stated in Theorem 5.4.1. The equation holds a priori for 2n − 2 < Re(s) < 2n, and we
deduce by analytic continuation that it holds for all s ∈ C, away from poles.

To finish the proof of Theorem 5.4.1, it remains to show that (Mβp,q)
−1 is equal to the right

hand side of (5.5). By considering the Beta function we see that Γ( s−p−q2 −n+ 1)/Γ( s−|p−q|2 −
n+ 1) is the Mellin transform of ν(t)dt, where

(5.6) ν(t) =
2

Γ(m)
t−p−q−2n+1(1− t2)m−1

+

for m = min(p, q). Note that if m = 0, then ν(t)dt = δ(1 − t). Multiplying the right hand

side of (5.6) by Γ( s+p+q2 )/Γ( s+|p−q|2 −n+ 1) =
∏n+m−1
j=1 ( s+p+q2 − j) amounts to replacing ν by

Lp,q(ν), where Lp,q is the differential operator

21−n−m
n+m−1∏
j=1

(
− d

dt
· t+ p+ q − 2j

)
.

Theorem 5.4.1 is proved.
In the case n = 2, the formula (5.5) is well-known (cf. [Wal, Lemma 7.23], [Du, Proposition

III.3.7]).
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[Du] Duflo, Représentations irréductibles des groupes semi-simples complexes, Analyse harmonique sur les

groupes de Lie (Sém., Nancy-Strasbourg, 1973-75), pp. 26-88. Lecture Notes in Math., Vol. 497, Springer,
Berlin, 1975.

[GS] I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic

Press, New York-London, 1964.
[GGP] I. M. Gel’fand, M. I. Graev, I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions,

W. B. Saunders Co., Philadelphia, PA.-London-Toronto, Ont., 1969.

[H1] S. Helgason, Geometric analysis on symmetric spaces, Second edition, Mathematical Surveys and Mono-
graphs, 39. American Mathematical Society, Providence, RI, 2008.

[H2] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators, and
spherical functions, Mathematical Surveys and Monographs, 83. American Mathematical Society, Prov-

idence, RI, 2000.

[H3] S. Helgason, Integral geometry and Radon transforms, Springer, New York, 2011.
[JW] K. D. Johnson and N. R. Wallach, Composition series and intertwining operators for the spherical

principal series. I., Trans. Amer. Math. Soc. 229 (1977), 137-173.

[Koc] A. N. Kochubei, A non-Archimedean wave equation, Pacific J. Math. 235 (2008), no. 2, 245-261.
[Kos] B. Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math.

Soc. 75 (1969), 627-642.

[SV] Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties, arXiv:1203.0039.
[SW] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical

Series, No. 32, Princeton University Press, Princeton, N.J., 1971.

[Wal] N. R. Wallach, Representations of reductive Lie groups, Automorphic forms, representations and L-
functions (Proc. Sympos. Pure Math. XXXIII, Oregon State Univ., Corvallis, Ore., 1977), Part 1,

pp. 71-86, Amer. Math. Soc., Providence, R.I., 1979.
[Wat] S. Watanabe, Generating functions and integral representations for the spherical functions on some

classical Gel’fand pairs, J. Math. Kyoto Univ. 33 (1993), no. 4, 1125-1142.


