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Abstract. This article concerns the study of a new invariant bilinear form B on the space of

automorphic forms of a split reductive group G over a function field. We define B using the
asymptotics maps from [8, 45], which involve the geometry of the wonderful compactification

of G. We show that B is naturally related to miraculous duality in the geometric Langlands

program through the functions–sheaves dictionary. In the proof, we highlight the connection
between the classical non-Archimedean Gindikin–Karpelevich formula and certain factoriza-

tion algebras acting on geometric Eisenstein series. We then give another definition of B

using the constant term operator and the inverse of the standard intertwining operator. The

form B defines an invertible operator L from the space of compactly supported automor-

phic forms to a new space of “pseudo-compactly” supported automorphic forms. We give
a formula for L−1 in terms of pseudo-Eisenstein series and constant term operators which

suggests that L−1 is an analog of the Aubert–Zelevinsky involution.
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1. Introduction

1.1. The goal of this paper. In [22], an invariant symmetric bilinear form B is defined on
the space of automorphic forms for SL(2) over any global field. The goal of this paper is to
generalize the definition of B and the corresponding theory to any split reductive group G over
a function field. The study of B is motivated by works [20, 24] on the geometric Langlands
program. There is also a significant connection between B and the theory of Eisenstein series,
as evidenced by [22].

Let G be a split reductive group over Fq. Let X be a geometrically connected smooth
projective curve over a finite field Fq, and let F be the field of rational functions on X. Let A
denote the adele ring of F .
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For any place v of F , the completion of F with respect to v will be denoted Fv. Let ov denote
the ring of integers of Fv, with residue field Fqv . We denote the standard maximal compact
subgroup of G(Fv) by Kv. Set K :=

∏
vKv; this is a maximal compact subgroup of G(A).

We fix a field E of characteristic 0. Unless specified otherwise, all functions will take values
in E.

Let A denote the space of K-finite C∞ functions on G(A)/G(F ). Let Ac ⊂ A denote the
subspace of functions with compact support.

In this paper we define and study a G(A)-invariant symmetric bilinear form B on Ac. (The
definition of B is given in §4.1.) Fix a Haar measure on G(A). The form B is defined as an
alternating sum of invariant bilinear forms BP on Ac, where the sum ranges over the conjugacy
classes of parabolic subgroups of G. When P = G, the form BG is the naive pairing

Bnaive(f1, f2) =

∫
G(A)/G(F )

f1(x)f2(x)dx, f1, f2 ∈ Ac.

The definition of BP was suggested by Y. Sakellaridis in a private communication, and it uses
the local asymptotics maps constructed in [8, 45] using the geometry of the De Concini–Procesi
wonderful compactification of G. The asymptotics map is defined in the more general setting
of harmonic analysis on spherical varieties in [45]. In [8], the asymptotics map is used to give
a geometric proof of Bernstein’s theorem on second adjointness. It is also shown ([8, Theorem
7.6]) that the asymptotics map is inverse to the standard (long) intertwining operator in the
classical representation theory of p-adic groups. Using this relationship, one sees that the
computation of the asymptotics of the characteristic function of Kv (cf. [44, §6]) goes back to
the classical non-Archimedean Gindikin–Karpelevich formula due to [33, 35].

In order to study the form B, we consider certain subspaces CP,± of the space of smooth
K-finite functions on G(A)/M(F )U(A), where P = MU is a standard parabolic subgroup
with Levi subgroup M and unipotent radical U . The spaces CP,± may be of independent
interest as they are defined with respect to the same rational cones and support conditions
as in the definition of Arthur’s truncation operator (cf. the definition of τ̂P in [2, §6]). In
Proposition 5.5.2, we prove that the standard intertwining operator extends to an isomorphism
RP : CP−,+ → CP,−.

Remark 1.1.1. We only consider the function field case in this paper, but the reader may check
that the definition of B on K-invariant automorphic forms extends to the number field case
using the Archimedean Gindikin–Karpelevich formula. We hope to define B on the whole space
Ac for an arbitrary global field F by better understanding the local Archimedean intertwining
operator in the future.

1.2. Motivation from geometric Langlands. Let us explain the motivation for the existence
of B from the geometric Langlands program. Here we assume that the field E equals Q` for a
prime ` coprime to the characteristic of F .

1.2.1. A remarkable `-adic complex on BunG×BunG. Let BunG denote the stack of G-bundles
on X. Let ∆ : BunG → BunG×BunG be the diagonal morphism. We have the `-adic complex
∆∗(Q`) on BunG×BunG.

This complex is the `-adic analog of the complex of D-modules ∆!ωBunG , which plays a
crucial role in the theory of miraculous duality on BunG, which was developed in [20, §4.5]
and [24]. Assume for the moment that X is over a ground field k of characteristic 0. Then
miraculous duality gives an equivalence between the DG category of (complexes of) D-modules
on BunG and its Lurie dual. Very roughly, the equivalence is defined as the functor

Ps-IdBunG,! : D-mod(BunG)co → D-mod(BunG)
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given by the kernel ∆!ωBunG (whereas the identity functor is given by the kernel ∆∗ωBunG).
The fact that this functor is an equivalence is a highly nontrivial theorem [24, Theorem 0.2.4].

1.2.2. The function b. Given G-bundles F1
G,F

2
G ∈ BunG(Fq), let b(F1

G,F
2
G) denote the trace of

the geometric Frobenius acting on the ∗-stalk of the complex ∆∗(Q`) over the point (F1
G,F

2
G) ∈

(BunG×BunG)(Fq). Using results of [47], we deduce a formula for b in terms of the asymptotics
maps (see Theorem C.7.2).

1.2.3. Relation between B and b. The quotient K\G(A)/G(F ) identifies with |BunG(Fq)|, the
set of isomorphism classes of G-bundles on X. So the function b can be considered as a function
on (G(A)/G(F ))×(G(A)/G(F )). The following theorem is one of our main results. The proof
is given in §4.4.

Theorem 1.2.4. Let E = Q` for ` coprime to the characteristic of F . Normalize the Haar
measure on G(A) so that K has measure 1. Then for any f1, f2 ∈ AKc , one has

(1.1) B(f1, f2) =

∫
(G×G)(A)/(G×G)(F )

b(g1, g2)f1(g1)f2(g2)dg1dg2.

By non-degeneracy of the naive pairing Bnaive, defining the bilinear form B is equivalent to
defining an operator L : Ac → A such that

B(f1, f2) = Bnaive(Lf1, f2), f1, f2 ∈ Ac.

Theorem 1.2.4 implies that the miraculous duality functor Ps-IdBunG,! is a D-module analog of
the operator q− dim BunGL via the functions–sheaves dictionary.

1.3. Analog of the Aubert–Zelevinsky involution. In §6.6, we define a subspace Aps-c ⊂ A

of “pseudo-compactly” supported functions using the constant term operators and the spaces
CP,+. We prove that the operator L above sends Ac to Aps-c, and the operator L : Ac → Aps-c
is an isomorphism (Theorem 6.6.3). The invertibility of L may be considered as a function-
theoretic analog of the main result (Theorem 0.2.4) of [24].

Moreover, we give an explicit formula

L−1f =
∑
P

(−1)dimZ(M)(EisP ◦CTP )(f), f ∈ Aps-c,

for the inverse, where EisP ,CTP denote respectively, the (pseudo-)Eisenstein operator and
constant term operator. By considering EisP ,CTP as global analogs of the parabolic induc-
tion functor and Jacquet functor, respectively, in the theory of smooth representations of a
p-adic group, one can view the formula for L−1 as an analog of the formula for the Aubert–
Zelevinsky involution on the Grothendieck group of smooth representations of finite length (see
Remark 6.6.4). This involution was first defined and studied for G = GL(n) by Zelevsinky
[52] and later for general reductive groups by Aubert [3]. On Iwahori fixed vectors, it also
corresponds to the Iwahori–Matsumoto involution (cf. [31]). There is an analogous involution
for representations of a finite Chevalley group, often called the Alvis–Curtis involution, which
was studied earlier in [1, 16].

The Aubert–Zelevinsky involution can be studied at the level of complexes. Such complexes
were considered in [17] for representations of a finite Chevalley group. For every smooth repre-
sentation M one can form a complex

0→M →
⊕
P

iGP r
G
P (M)→ · · · → iGBr

G
B(M)→ 0

where iGP , r
G
P denote, respectively, the parabolic induction and Jacquet functors, and the sum

in the i-th term runs over standard parabolic subgroups of corank i in G. We call this complex
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the Deligne–Lusztig complex associated to M and denote it by DL(M). Aubert showed that
for an irreducible module M , the complex DL(M) has cohomology in only one degree, which
implies that the Aubert–Zelevsinky involution sends irreducible modules to irreducible modules
(up to a sign). A new proof of this result was recently given in [7] using asymptotics maps and
the geometry of the wonderful compactification of G.

1.4. Structure of the paper.

1.4.1. General remark. In the main body of the article we work with classical functions on
G(Fv) and G(A)/G(F ). These are, however, heavily motivated by geometric definitions and
results appearing in the geometric Langlands program. We review the relevant geometry in
Appendices A–C.

1.4.2. The main body of the paper. In Section 2, we study the asymptotics map and its relation
to the intertwining operator over a local non-Archimedean field. In order to elucidate the
support conditions of various functions, we give a combinatorial description of the bounded
subsets of the boundary degenerations of G.

In Section 3, we compute the asymptotics of the characteristic function of Kv by reducing
to the non-Archimedean Gindikin–Karpelevich formula using intertwining operators on Kv-
invariants. To do so, we extend the classical Satake isomorphism to an isomorphism between
certain completed Hecke algebras.

In Section 4, we define the bilinear form B. After giving a geometric interpretation of the
restriction of B to AKc , we prove Theorem 1.2.4.

The definition of B we give differs slightly from the definition given in [22] for G = SL(2).
In our definition, we use local asymptotics (which is essentially equivalent to local inverse
intertwining operators) and then apply a local-to-global procedure.

In Section 5, we provide an alternate definition of B, which directly generalizes the one in
[22]. For a parabolic subgroup P with Levi factor M , we define subspaces CP,± of the space of
K-finite C∞ functions on G(A)/M(F )U(A). The definitions are such that the constant term
operator CTP (whose definition we recall) sends Ac to CP,−. The intertwining operator RP
(which is of local nature) is defined as a map CP−,+ → CP,−, and we show that RP is an
isomorphism. Let 〈 , 〉 denote the natural pairing between functions in CP− (when convergent).
We prove the following in §5.6:

Theorem 1.4.3. For any f1, f2 ∈ Ac, one has

(1.2) B(f1, f2) =
∑
P

(−1)dimZ(M)〈R−1
P CTP (f1),CTP−(f2)〉,

where the sum ranges over conjugacy classes of parabolic subgroups of G.

In Section 6, we use Theorem 1.4.3 to define the operator L : Ac → A and the subspace
Aps-c ⊂ A of “pseudo-compactly” supported functions. We show that L sends Ac to Aps-c,
and in Theorem 6.6.3 we prove that the operator L : Ac → Aps-c is invertible. We give a
formula (6.11) for L−1, which is in fact simpler than the formula for L. This formula may be
viewed as an analog of the definition of the Aubert–Zelevinsky involution.
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1.4.4. Appendices A–C. In Appendix A, we consider the global model for the formal arc space
of a group embedding into an algebraic monoid. This model was also used in [9, §2]. We realize
the global model as a substack of a symmetrized version of the Hecke stack. We give a bound on
the difference of the Harder–Narasimhan coweights of the two bundles corresponding to a point
of the Hecke stack (Lemma A.4.1). In this article, we are primarily interested in the stack H+

M

attached to the monoid M , defined as the closure of M in the affine closure of G/U , where P is
a parabolic subgroup with Levi factor M . The stack H+

M is a graded Ran version (in the sense
of [23]) of the closed substack of the Hecke stack studied in [11] and [10, §1.8]. The Hecke stack
is a twisted product of BunM and the Beilinson–Drinfeld (factorizable) affine Grassmannian,
and it is more convenient to use the latter to talk about factorization properties. We briefly
review the relevant notation and properties of the factorizable affine Grassmannian – we use a
symmetrized version that does not explicitly mention the Ran space.

In Appendix B, we review the definition of the factorization algebras on the affine Grass-
mannian introduced in [12, 23] that act on geometric Eisenstein series. The main goal of
this Appendix is to highlight the connection (via Grothendieck’s functions–sheaves dictionary)
between certain measures (related to unramified intertwining operators) appearing in the classi-
cal non-Archimedean Gindikin–Karpelevich formula and Gaitsgory’s factorization algebras (see
Proposition B.7.5, Lemma B.8.3). From this perspective, we point out how the main theorem
of [10] may be interpreted as a categorical or geometric version of (Langlands’ interpretation
of) the Gindikin–Karpelevich formula.

In Appendix C, we study the compactification of the diagonal morphism of BunG using the
results of [47]. The compactification BunG we define is slightly different from the one found
in the literature. We review the definition and relevant properties of the Drinfeld–Lafforgue–
Vinberg degeneration of BunG. In particular we highlight the connection between the geometric
Bernstein asymptotics studied in loc. cit. and Gaitsgory’s factorization algebras to deduce that
for an arbitrary parabolic subgroup, the geometric Bernstein asymptotics corresponds to the
classical asymptotics of the characteristic function of K via the functions–sheaves dictionary.

1.5. Conventions. Throughout the paper, G will be a connected split reductive group over
Fq. Fix a split torus T ⊂ G and a Borel B containing T . Let W be the Weyl group of T . Let

Λ̌ (resp. Λ) denote the weight (resp. coweight) lattice of T .
The monoid of dominant weights (resp., coweights) will be denoted by Λ̌+

G (resp., by Λ+
G).

The set of vertices of the Dynkin diagram of G will be denoted by ΓG; for each i ∈ ΓG there
corresponds a simple coroot αi and a simple root α̌i. The set of coroots (resp. positive coroots)
will be denoted by ΦG (resp. Φ+

G) and the positive span of Φ+
G inside Λ by Λpos

G . Let ∆̌G

(resp. Φ̌+
G, Φ̌−G, Φ̌G) denote the simple (resp. positive, negative, all) roots of G. By 2ρ̌ ∈ Λ̌

(resp. 2ρ ∈ Λ) we will denote the sum of the positive roots (coroots) of G and by w0 the longest
element in the Weyl group of G. For λ, µ ∈ Λ we will write that λ ≥ µ if λ − µ ∈ Λpos

G , and

similarly for Λ̌pos
G .

We will only consider parabolic subgroups that contain T . Let P be a standard1 parabolic
subgroup, i.e., P contains B. Then the Levi quotient can be canonically realized as a subgroup
M ⊂ P . We have P = MU where U is the unipotent radical of P . There is a unique parabolic
P− such that P∩P− = M . To M there corresponds a subdiagram ΓM ⊂ ΓG, coroots ΦM ⊂ ΦG,
and positive coroots Φ+

M ⊂ Φ+
G. We will denote by Λ+

M ⊃ Λ+
G, Λpos

M ⊂ Λpos
G , 2ρ̌M ∈ Λ̌, ≥M , etc.

the corresponding objects for M .

1Recall that in any conjugacy class of parabolic subgroups of G, there is exactly one standard parabolic
subgroup.
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Let Rep(G) denote the abelian category of finite-dimensional G-modules.
Given two G-spaces Y, Z such that the diagonal action of G on Y ×Z is free, we let Y ×G Z

denote the quotient of Y ×Z by the diagonal G-action.
For a scheme or stack Y, we let D(Y) denote the DG category of bounded constructible Q`-

sheaves on Y. We will use ‘sheaf’ to mean a complex of sheaves. All functors between sheaves
are derived functors. When Y is a stack over SpecFq, we assume that ` is coprime to q. Choose

a square root of q in Q` once and for all. The intersection cohomology sheaves are normalized
so that they are pure of weight 0. In other words, for a smooth Fq-stack Y of dimension n,

ICY
∼= (Q`( 1

2 )[1])⊗n.

1.6. Acknowledgments. This research is partially supported by the Department of Defense
(DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG)
Program. I am extremely grateful to my doctoral advisor V. Drinfeld for his continual guidance
and support throughout this project. I thank R. Bezrukavnikov and Y. Sakellaridis for many
helpful discussions about their works. I also thank D. Gaitsgory and S. Raskin for explaining
much about factorization algebras and the related derived algebraic geometry to me. I thank
S. Schieder for sharing his results with me and for many conversations about VinBunG.

2. Local intertwining operators and asymptotics

In this section, we work over a non-Archimedean local field Fv, and G is a connected split
reductive group over Fv. The subscript v is only present to keep notation consistent throughout
this article – the presence of a global field is not assumed, and the characteristic of Fv is arbitrary
(and possibly zero).

Let ||v denote the absolute value on Fv, let ov denote the ring of integers of Fv, and let
qv be the cardinality of the residue field. We will use G, P, XP , etc. to also denote the
topological groups/spaces of Fv-points of the corresponding algebraic groups or varieties, e.g.,
G = G(Fv), P = P (Fv), XP = XP (Fv). Let K = Kv denote the standard maximal compact
subgroup of G, and KM denotes the standard maximal compact subgroup of M .

In §2.1–2.3, we define the space XP and describe how to consider bounded subsets of G/U
and XP in terms of subsets of the lattice Λ. In §2.4–2.7, we review some definitions and results
from [8] to introduce the local asymptotics map AsympP , which is “essentially the same” as
the inverse of the standard intertwining operator. We observe that AsympP is determined by a
generalized function ξP on XP . In §2.5–2.8, we give a formula for the inverse of the intertwining
operator in terms of ξP .

2.1. Bounded sets. Let X be a quasi-affine variety over Fv (i.e., there exists a locally closed
embedding of X into a finite dimensional affine space). We say that a subset S ⊂ X(Fv) is
bounded if the following equivalent conditions are satisfied:

(i) for any regular function f ∈ Fv[X] := Γ(X,OX), the function |f |v is bounded on S,
(ii) for any locally closed embedding (in the sense of algebraic geometry) of X into an affine

space, the image of S is bounded (with respect to the norm induced by the absolute value on
Fv),

(iii) for any open embedding (in the sense of algebraic geometry) of X into an affine variety,
the image of S is relatively compact (for the “usual” topology induced by the topology on Fv).

2.1.1. Recall that an Fv-scheme X is strongly quasi-affine if the canonical morphism

X→ SpecFv[X]
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is an open embedding and Fv[X] is a finitely generated Fv-algebra. For a strongly quasi-affine
variety X, in condition (iii) it suffices to consider only the open embedding X ↪→ SpecFv[X].

2.2. The strongly quasi-affine varieties G/U and XP . Fix a standard parabolic subgroup
P ⊂ G with Levi subgroup M and unipotent radical U .

2.2.1. The quotient varieties G/U and G/U− are strongly quasi-affine by [27]. Let G/U :=

SpecFv[G/U ] and G/U− := SpecFv[G/U
−] denote the affine closures.

We review the definition of the variety XP introduced in [8, §2.2.1] below.

2.2.2. Define the boundary degeneration

XP := (G×G)/(P ×
M
P−) = (G/U ×G/U−)/M,

whereM acts diagonally on the right. Recall (cf. [19, Proposition 2.4.4]) that XP is a quasi-affine
variety; let XP := SpecFv[XP ] denote the affine closure. By [27], Fv[G/U ×G/U−] is finitely
generated. Therefore Hilbert’s theorem on invariants implies that Fv[XP ] = Fv[G/U ×G/U−]M

is finitely generated (i.e., XP is strongly quasi-affine). Thus a subset S ⊂ XP is bounded if and
only if f(S) ⊂ Fv is bounded for every f ∈ Fv[XP ].

2.3. Combinatorial setup. We give a combinatorial description of bounded subsets of XP in
Proposition 2.3.5 below.

2.3.1. By the Cartan decomposition, KM\M/KM = (T/KT )/WM . We have an isomorphism

ordT : T/KT → Λ

sending λ(x) 7→ λ⊗(− logqv |x|v) where λ ∈ Λ, x ∈ F×v . This induces an isomorphism

(2.1) ordM : KM\M/KM → Λ+
M .

2.3.2. By the Iwasawa decomposition, G = K · P = K · P−. Therefore (2.1) induces the
projections

(2.2) ordM : G/U → K\(G/U)/KM = KM\M/KM = Λ+
M

and ordM : G/U− → Λ+
M . We have a left G×G-action on XP . Using (2.1) again, we also

define the projection

(2.3) ordM : XP → (K ×K)\XP = KM\M/KM = Λ+
M ,

where the first equality sends (m1,m2) 7→ m−1
1 m2 when m1,m2 ∈M .

Lemma 2.3.3. Let g1 ∈ G/U and g2 ∈ G/U−. Consider the image of (g1, g2) in XP . Then

wM0 ordM (g1, g2) ≤M ordM (g2)− ordM (g1) ≤M ordM (g1, g2).

Proof. Let λ1 = ordM (g1), λ2 = ordM (g2), and θ = ordM (g1, g2). It follows from the definitions
that θ($v) ∈ KMλ1($v)

−1KMλ2($v)KM , where $v ∈ ov is a uniformizer. This is equivalent
to λ2($v) ∈ KMλ1($v)KMθ($v)KM . The usual properties of the (spherical) Hecke algebra
imply that λ2 ≤M λ1 + θ. Similarly, we also have λ1($v) ∈ KMλ2($v)KMθ($v)

−1KM , which
implies that λ1 ≤M λ2 − wM0 θ. �
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2.3.4. Let ΛQ := Q⊗Z Λ. Let Λpos,Q
G ⊂ ΛQ denote the rational cone corresponding to Λpos

G .

We define the rational ordering ≤Q
G by µ ≤Q

G λ if and only if λ− µ ∈ Λpos,Q
G .

Let Λ̌+,Q
G ⊂ Λ̌Q := Q⊗Z Λ̌ denote the rational cone corresponding to Λ̌+

G.

We say that a subset S ⊂ ΛQ is bounded below (with respect to ≤Q
G) if the following equivalent

conditions are satisfied:
(i) For any λ̌ ∈ Λ̌+

G, the subset λ̌(S) ⊂ Q is bounded below.

(ii) There exists a subset S0 ⊂ ΛQ with compact closure in R⊗Z Λ such that S ⊂ S0 +Λpos,Q
G .

Define S ⊂ ΛQ
G to be bounded above if −S is bounded below.

Proposition 2.3.5. A subset S ⊂ XP is bounded if and only if ordM (S) ⊂ Λ+
M is bounded

above.

Proof. Consider the embedding T ↪→ XP : t 7→ (t, 1) and let T denote the closure of T in
XP . Let ST ⊂ T denote the preimage of (K ×K) · S ⊂ XP under the previous embedding.
Then S is bounded if and only if ST is bounded in T . Note that ST is WM -stable, and
−ordT (ST ) = WM · ordM (S). It is shown in [51, Corollary 4.1.5] that Fv[T ] ⊂ Fv[T ] has
a basis formed by the characters in WM · Λ+

G. For a weight λ̌ ∈ Λ̌+
G and t ∈ T , we have

− logqv |λ̌(t)|v = 〈λ̌, ordT (t)〉. Therefore ST is bounded in T if and only if −ordT (ST ) is bounded

above. Since ordM (S) ⊂ Λ+
M , we conclude that WM · ordM (S) is bounded above if and only if

ordM (S) is bounded above. �

2.3.6. The rational cone Λpos,Q
U . We introduce the rational cone Λpos,Q

U , which is used through-
out this article, and review some of its properties, which are proved in [51, §3.1.1].

Let Λpos
U ⊂ Λ denote the non-negative integral span of the positive coroots of G that are not

coroots of M . The submonoid Λpos
U is stable under the actions of WM . Let Λpos,Q

U denote the
corresponding rational cone.

Lemma 2.3.7. Let λ, λ′ ∈ Λ+
M with λ ≤M λ′. If λ′ ∈ Λpos

U , then λ ∈ Λpos
U .

Lemma 2.3.8. The subset Λpos
U ⊂ Λ is equal to the intersection of w(Λpos

G ) for all w ∈ WM .

Consequently, Λpos
U ∩ (−Λ+

M ) = Λpos
G ∩ (−Λ+

M ).

Remark 2.3.9. Lemma 2.3.8 implies that Λpos
U ∩Λ+

M = wM0 (Λpos
G )∩Λ+

M . This submonoid of Λ+
M

is denoted by Λ+
M,G in [11, §6.2.2, Proposition 6.2.3].

Lemma 2.3.10. The submonoid WM · Λ̌+
G ⊂ Λ̌ is dual to Λpos

U , i.e.,

(2.4) WM · Λ̌+
G = {λ̌ ∈ Λ̌ | 〈λ̌, µ〉 ≥ 0 for all µ ∈ Λpos

U }.
Remark 2.3.11. Let XP denote an ov-model of XP , and set XP := Spec Γ(XP,OXP

). Then

XP×Spec ov SpecFv = XP , and XP(ov) is a K ×K-stable subset of XP (Fv). The proof of
Proposition 2.3.5 shows that

XP(ov) ∩ XP (Fv) ⊂ ord−1
M ((−Λpos,Q

U ) ∩ Λ+
M ),

where Λpos,Q
U is the dual cone of WM · Λ̌+,Q

G by Lemma 2.3.10.

2.3.12. We recall the definition of the Langlands retraction L : ΛQ → Λ+,Q
G , which goes

back to [34]. It is defined as follows: for λ ∈ ΛQ, let L(λ) be the least element2 in the set

{θ ∈ Λ+,Q
G | λ ≤Q

G θ} in the sense of the ≤Q
G ordering. We refer the reader to [18] for further

properties of the Langlands retraction.

Let Λ+,Q
M ⊂ ΛQ denote the rational cone corresponding to Λ+

M .

2The existence of the least element is not obvious; it was proved by R. P. Langlands in [34, §4].
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Lemma 2.3.13. Let λ ∈ Λ+,Q
M . Then L(λ)− λ ∈ Λpos,Q

U ∩ (−Λ+,Q
M ).

Proof. Recall from [18, Proposition 2.1] that L is piecewise linear, with linearity domains CJ
indexed by subsets J ⊂ ΓG: Let V ⊥J = {λ ∈ ΛQ | 〈α̌j , λ〉 = 0, j ∈ J}. Then CJ is the closed

convex cone generated by −αj , j ∈ J and V ⊥J ∩ Λ+,Q
G .

Suppose that λ ∈ Λ+,Q
M lies in CJ . Then λ−L(λ) belongs to the closed convex cone generated

by −αj for j ∈ J , and L(λ) ∈ V ⊥J by [18, Lemma 2.3]. Therefore 〈α̌j , λ− L(λ)〉 = 〈α̌j , λ〉 ≥ 0
for j ∈ ΓM ∩ J . Since 〈α̌i, αj〉 < 0 for i ∈ ΓG − J, j ∈ J , we also have 〈α̌i, λ − L(λ)〉 ≥ 0

for i ∈ ΓG − J . Hence λ − L(λ) ∈ (−Λpos,Q
G ) ∩ Λ+,Q

M . By Lemma 2.3.8, we have the equality

(−Λpos,Q
G ) ∩ Λ+,Q

M = (−Λpos,Q
U ) ∩ Λ+,Q

M . �

Let ΛR := R⊗Z Λ and let Λ+,R
G ,Λpos,R

G denote the real cones corresponding to Λ+
G,Λ

pos
G .

Corollary 2.3.14. A subset S ⊂ Λ+,Q
M is bounded above if and only if there exists a compact

subset S0 ⊂ Λ+,R
G such that S is contained in the set {θ − µ | θ ∈ S0, µ ∈ Λpos,Q

U }.

Proof. Suppose S ⊂ Λ+,Q
M is bounded above. Then there exists a compact subset S1 ⊂ ΛR

such that S is contained in {θ − µ | θ ∈ S1, µ ∈ Λpos,Q
G }. Let S0 denote the closure of L(S)

in ΛR. Then S0 is contained in Λ+,R
G ∩ {θ − µ | θ ∈ S1, µ ∈ Λpos,R

G }, which is a compact set.

Lemma 2.3.13 implies that S is contained in {θ − µ | θ ∈ S0, µ ∈ Λpos,Q
U }. The other direction

is evident. �

2.3.15. The closed embedding G×P− ↪→ G×G induces a closed embedding G/U ↪→ XP
sending g1 7→ (g1, 1). By [51, Corollary 4.1.5], this embedding extends to a closed embedding of

affine closures G/U ↪→ XP . Similarly, the closed embedding G/U− ↪→ XP : g2 7→ (1, g2) extends

to a closed embedding G/U− ↪→ XP . Using these embeddings, we deduce the combinatorial
description for bounded subsets of G/U and G/U− from Proposition 2.3.5:

Proposition 2.3.16. (i) A subset S ⊂ G/U is bounded if and only if there exists a finite subset

S0 ⊂ Λ such that ordM (S) ⊂ S0 + Λpos,Q
U .

(ii) A subset S ⊂ G/U− is bounded if and only if there exists a finite subset S0 ⊂ Λ such

that ordM (S) ⊂ {θ − µ | θ ∈ S0, µ ∈ Λpos,Q
U }.

Proof. Let g1 ∈ G/U . Then ordM (g1) = −wM0 · ordM (g1, 1). Using the closed embedding

G/U ↪→ XP , we deduce (i) from Proposition 2.3.5 and Corollary 2.3.14. For g2 ∈ G/U−,
we have ordM (g2) = ordM (1, g2), so we can similarly deduce (ii) using the closed embedding

G/U− ↪→ XP . �

2.4. The space Cb(XP ). We review the definitions of the space Cb(XP ) from [8] in the context
of our combinatorial setup.

2.4.1. Let S∗(XP ) denote the space of distributions on XP . Using our fixed choice of Haar mea-
sures, we identify distributions and generalized functions on XP . Given a generalized function
ξ ∈ S∗(XP ), one can define a map Tξ : C∞c (G/U)→ C∞(G/U−) by the formula

(2.5) Tξ(ϕ)(g2) =

∫
G/U

ϕ(g1)ξ(g1, g2)dg1, ϕ ∈ C∞c (G/U), g2 ∈ G/U−.

Let C(XP ) denote the space of K ×K-finite C∞ functions on XP .
Let Cb(XP ) ⊂ C(XP ) denote the subspace of functions with bounded support. Proposi-

tion 2.3.5 implies that Cb(XP ) is the set of functions ξ ∈ C(XP ) such that ordM (supp ξ) is
bounded above.
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2.4.2. We say that a generalized function ξ ∈ S∗(XP ) has essentially bounded support if the
convolution of ξ with any element of C∞c (G)⊗C∞c (G) has bounded support. Let S∗b (XP )G

denote the space of generalized function with essentially bounded support that are invariant
under the diagonal G-action on XP .

2.5. The spaces CP,±. Let ΛQ
G,P = ΛQ

M/[M,M ]. This vector space is the quotient of ΛQ by the

subspace spanned by the coroots of M . For λ ∈ ΛQ, let [λ]P denote the projection of λ to ΛQ
G,P .

We define the map

degP : G/U → ΛQ
G,P

by degP (x) = [ordM (x)]P .

Let Λpos,Q
G,P denote the image of Λpos,Q

G (equivalently Λpos,Q
U ) under the projection ΛQ → ΛQ

G,P .

2.5.1. Let CP denote the space of K-finite C∞ functions on G/U . Let CP,c ⊂ CP stand for
the subspace of compactly supported functions.

Let CP,+ ⊂ CP denote the set of all functions ϕ ∈ CP such that degP (suppϕ) is contained

in S0 + Λpos,Q
G,P for some finite subset S0 ⊂ ΛQ

G,P . Similarly, let CP,− ⊂ CP denote the set of all

ϕ ∈ CP such that −degP (suppϕ) is contained in S0 + Λpos,Q
G,P for some finite set S0.

One similarly defines the spaces CP−,± ⊂ CP− . We emphasize that CP−,+ is defined with

respect to the cone −Λpos,Q
G,P . So CP−,± is the set of all ϕ ∈ CP− such that ∓degP−(suppϕ) is

contained in S0 + Λpos,Q
G,P for some finite set S0.

Lemma 2.5.2. Let ξ ∈ S∗b (XP )G be a generalized function with essentially bounded support.
Then formula (2.5) defines a map Tξ : CP,− → CP−,+.

Proof. Let ϕ ∈ CP,−. Since ϕ is K-finite, there exists a compact open subgroup K ′ ⊂ K such
that ϕ is K ′-invariant. Let δK′ ∈ C∞c (G) equal 1

mes(K′) times the characteristic function of K ′.

Then

ξ′ := (δK′ ⊗ 1) ∗ ξ = (1⊗ δK′) ∗ ξ ∈ C∞b (XP )

is a smooth function with bounded support, and it suffices to show that Tξ′(ϕ) = Tξ(ϕ) is
well-defined and belongs to CP−,+.

Fix g2 ∈ G/U−. For any g1 ∈ G/U , Lemma 2.3.3 gives the inequality ordM (g1) ≤M
ordM (g2)−wM0 ordM (g1, g2). Then Corollary 2.3.14 implies that there is a finite subset S0 ⊂ Λ

such that if ξ′(g1, g2) 6= 0, then ordM (g1) ⊂ S0+wM0 Λpos,Q
G . From this combinatorial description,

we deduce that the function sending g1 ∈ G/U to ϕ(g1)ξ′(g1, g2) is compactly supported.
Therefore Tξ′(ϕ) is well-defined.

Moreover, if Tξ′(ϕ)(g2) 6= 0, then there must exist g1 ∈ G/U such that g1 ∈ suppϕ and

(g1, g2) ∈ supp ξ′ ⊂ XP . Observe that degP−(g2) = degP (g1) + [ordM (g1, g2)]P in ΛQ
G,P . Since

ξ′ has bounded support, [ordM (supp ξ′)]P is contained in −Λpos,Q
G,P + S1 for a finite set S1. By

definition of CP,−, we deduce that degP−(g2) must lie in −Λpos,Q
G,P + S2 for some finite set S2.

Thus Tξ′(ϕ) ∈ CP−,+. �

2.6. Intertwining operator. Define the intertwining operator RP : C∞c (G/U−)→ C∞(G/U)
by the formula

(2.6) RP (ϕ)(g) =

∫
U

ϕ(gu)du, g ∈ G.

Let X−P denote the space (G/U−×G/U)/M . Any generalized function η ∈ S∗(X−P ) defines a

map Tη : C∞c (G/U−)→ C∞(G/U) as in formula (2.5). Let ηP ∈ S∗(X−P ) denote the generalized
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function such that RP = TηP , i.e.,

(2.7)

∫
U

ϕ(g2u)du =

∫
G/U−

ϕ(g1)ηP (g1, g2)dg1, ϕ ∈ C∞c (G/U−), g2 ∈ G.

Define the projection
ordM : X−P → (K ×K)\X−P = Λ+

M

by sending (m1,m2) 7→ ordM (m−1
1 m2) for m1,m2 ∈M .

Lemma 2.6.1. The subset ordM (supp ηP ) is contained in (−Λpos,Q
U ) ∩ Λ+

M . In particular,
ordM (supp ηP ) is bounded above.

Proof. Suppose that (k1a, k2) ∈ supp ηP for k1, k2 ∈ K and a ∈ T with ordT (a) ∈ Λ+
M . Then

by definition of ηP , there exists u ∈ U such that u ∈ kaU− for k = k−1
2 k1.

Fix a dominant weight λ̌ ∈ Λ̌+
G. Let ∆(λ̌) denote the Weyl G-module with highest weight λ̌.

This Fv-vector space is the extension of scalars of a free ov-module, and the latter determines
a K-invariant norm ||v on ∆(λ̌). We give ∆(λ̌)∗ the dual norm.

Let φ ∈ ∆(λ̌)∗ be a norm 1 weight vector of weight −wM0 λ̌. Since −wM0 λ̌ ≥M −λ̌ and all
weights of ∆(λ̌)∗ are ≥G −λ̌, we observe that φ is U−-invariant. By orthogonality of weight
spaces, there exists a weight vector ξ ∈ ∆(λ̌) of weight wM0 λ̌ and norm 1 such that 〈φ, ξ〉 = 1.
Note that ξ is automatically U -invariant. We have the inequality

0 = logqv |〈u · φ, ξ〉|v = 〈wM0 λ̌, ordT (a)〉+ logqv |〈k · φ, ξ〉|v ≤ 〈w
M
0 λ̌, ordT (a)〉.

Since wλ̌ ≥M wM0 λ̌ for any w ∈WM and ordT (a) ∈ Λ+
M , we conclude that ordT (a) ∈ wΛpos,Q

G for

all w ∈WM . Lemma 2.3.8 implies that ordT (a) ∈ Λpos,Q
U . Since ordM (k1a, k2) = −wM0 ordT (a),

we are done. �

The following result is [8, Corollary 7.4, Proposition 7.5(a)]. We give a proof using our
combinatorial description of bounded subsets of XP .

Proposition 2.6.2. Formula (2.6) defines an operator RP : CP−,+ → CP,−.

Proof. The proof is exactly the same as the proof of Lemma 2.5.2. We repeat the argument
for completeness: Let ϕ ∈ CP−,+. Fix g2 ∈ G/U . For any g1 ∈ G/U−, Lemma 2.3.3 gives

the inequality ordM (g1) ≤M ordM (g2) − wM0 ordM (g1, g2). Since ordM (supp ηP ) ⊂ −Λpos,Q
U ,

the inequality implies that if ξ′(g1, g2) 6= 0, then ordM (g1) = ordM (g2) + µ for some µ ∈
wM0 Λpos,Q

G . From this combinatorial description, we deduce that the function sending g1 ∈
G/U− to ϕ(g1)ηP (g1, g2) is compactly supported. Therefore (2.7) is well-defined.

Moreover, if RP (ϕ)(g2) 6= 0, then there must exist g1 ∈ G/U− such that g1 ∈ suppϕ and

(g1, g2) ∈ supp ηP ⊂ X−P . Observe that degP (g2) = degP−(g1) + [ordM (g1, g2)]P in ΛQ
G,P .

Lemma 2.6.1 shows that [ordM (supp ηP )]P is contained in −Λpos,Q
G,P . By definition of CP−,+, we

deduce that degP (g2) must lie in −Λpos,Q
G,P + S0 for some finite set S0. Thus RP (ϕ) ∈ CP,−. �

2.7. Local asymptotics map. The work [8] gives a geometric proof of the second adjointness
between parabolic induction and restriction (Jacquet) functors by defining the Bernstein map B :
C∞c (XP )→ C∞c (G). If Fv has characteristic 0, this map is the “asymptotics” map constructed
in [45] in the more general setting of spherical varieties. The dual of B gives a map

AsympP : S∗(G)→ S∗(XP ),

where S∗(G), S∗(XP ) are the spaces of distributions on G,XP , respectively.
Fix the Haar measures on G,M,U so that K,KM ,K ∩ U have measure 1. Using these

measures, we identify distributions and generalized functions on G,XP .
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2.7.1. The Bernstein map B is G×G-equivariant, and hence so is AsympP . Therefore AsympP
preserves K ×K-finiteness, and [8, Proposition 7.1] shows that it restricts to a map

AsympP : C∞c (G)→ Cb(XP ).

2.7.2. Let δg ∈ S∗(G) denote the delta (generalized) function at g ∈ G. Set

(2.8) ξP := AsympP (δ1) ∈ S∗(XP ),

which we consider as a generalized function on XP . Let f1, f2 ∈ C∞c (G) and set f∨2 (g) =
f2(g−1). Then G×G-equivariance of AsympP,v implies that

(2.9) (f1, f2) ∗ ξP = AsympP (f1 ∗ f∨2 ),

where ∗ denotes convolution with respect to the G×G-action on XP (resp. the usual convolution
on G). In particular, ξP has essentially bounded support in the sense that the convolution of
ξP with any element of C∞c (G) has bounded support.

Note that ξP depends on the choice of Haar measure on G.

2.7.3. We have the following relationship between the asymptotics map and the intertwining
operator:

Theorem 2.7.4 ([8, Theorem 7.6]). Let ϕ ∈ C∞c (G/U). We have an equality

ϕ = (RP ◦ TξP )(ϕ).

In particular, the integral defining (RP ◦ TξP )(ϕ) converges.

The theorem is stated for the case P = B in [8], but one can check that the proof generalizes
to the case of an arbitrary parabolic subgroup.

2.8. Invertibility of RP . We use Theorem 2.7.4 to show that RP is an isomorphism in Propo-
sition 2.8.5 below.

2.8.1. Let C̃P,− denote the smooth part of the linear dual representation C∗P,−. Let

R∗P : C̃P,− → C̃P−,+

denote the linear dual of the operator RP . Using the measure on G/U determined by the fixed

Haar measures on G and U , we identify C̃P,− with a subspace of CP containing CP,c. Similarly,

we consider C̃P−,+ ⊂ CP− .
Let RP− : CP,+ → CP−,− denote the intertwining operator with respect to the opposite

parabolic P− (i.e., we integrate over U− in formula (2.6)).

Lemma 2.8.2. We have an equality R∗P = RP− : CP,c → CP− .

Proof. Let ϕ̃, ϕ ∈ CP,c. Then

〈R∗P (ϕ̃), ϕ〉 =

∫
G/U

ϕ̃(g)

∫
U

ϕ(gu)dudg =

∫
G

ϕ̃(g)ϕ(g)dg

=

∫
G/U−

∫
U−

ϕ̃(gū)ϕ(g)dūdg = 〈RP−(ϕ̃), ϕ〉,

where all the integrals are finite. This proves the lemma. �
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2.8.3. Let ξP ∈ S∗(XP ) be the generalized function defined in (2.8). Note that ξP ∈ S∗b (XP )G,
so Lemma 2.5.2 defines a map TξP : CP,− → CP−,+. Theorem 2.7.4 has the following reformu-
lation:

Lemma 2.8.4. We have the equality RP ◦ TξP = id on CP,−.

Proof. Let ϕ ∈ CP,−. Since ϕ is K-finite, there exists a compact open subgroup K ′ ⊂ K such
that ϕ is K ′-invariant. The proof of Lemma 2.5.2 shows that

ordM (suppTξP (ϕ)) ⊂ S := {λ+ θ − µ | λ ∈ ordM (suppϕ), θ ∈ S0, µ ∈ Λpos,Q
G },

where S0 ⊂ Λ is a finite subset depending only on K ′ and not ϕ. The proof of Proposition 2.6.2
shows that ordM (suppRP (TξP (ϕ))) is also contained in S. Therefore we deduce that it suffices
to prove that ϕ = RP (TξP (ϕ)) for compactly supported ϕ ∈ CP,c, which is Theorem 2.7.4. �

Proposition 2.8.5. The map RP : CP−,+ → CP,− is an isomorphism. The inverse is given by
the formula

(2.10) R−1
P (ϕ)(g2) =

∫
G/U

ϕ(g1)ξP (g1, g2)dg1, ϕ ∈ CP,−, g2 ∈ G/U−

Remark 2.8.6. Our proof of Proposition 2.8.5 is different from the one in [8, Proposition 7.5(b)].
This proof was suggested by V. Drinfeld.

We give a separate, self-contained proof of invertibility of RKP : CKP−,+ → CKP,− with explicit

formulas in Corollary 3.3.5.

Proof. Lemma 2.8.4 implies that RP has a right inverse given by (2.10). It remains to show
that RP has a left inverse. Apply Lemma 2.8.4 to the opposite parabolic P− to get a map
TξP− : CP−,− → CP,+ such that RP− ◦ TξP− = id on CP−,−. Taking the dual operators gives
an equality

(2.11) T ∗ξP− ◦R
∗
P− = id

on CP−,c ⊂ C̃P−,−. Let ϕ ∈ CP−,c. Lemma 2.8.2 (applied to P−) implies that R∗P−(ϕ) = RP (ϕ).

Define ξ̃ ∈ S∗b (XP )G by

ξ̃(g1, g2) = ξP−(g2, g1).

It follows formally from the definition of TξP− that T ∗ξP−
(RP (ϕ)) = Tξ̃(RP (ϕ)), where the map

Tξ̃ : CP,− → CP−,+ is defined by Lemma 2.5.2. Therefore (2.11) implies that Tξ̃ ◦ RP = id on
CP−,c. Then the same argument as in the proof of Lemma 2.8.4 shows that Tξ̃ ◦ RP = id on
CP−,+, so we conclude that RP has a left inverse. �

3. Formulas on K-invariants

Let Fv be an arbitrary non-Archimedean local field. We use the same notation and conven-
tions as in §2 (e.g., G = G(Fv), K = Kv, etc.).

Restricting to K-invariants, we see that the intertwining operator is essentially convolution
with a measure µM on M . We compute the Satake transform of µM using the non-Archimedean
Gindikin–Karpelevich formula. We give a formula for AsympP (δK), where δK is the character-
istic function of K, in terms of the convolution inverse of µM .

Fix the Haar measures on G, M, T, U, U− so that K, KM , KT , K ∩ U, K ∩ U− all have
measure 1.

3.1. Intertwining operator on K-invariants. Let K ⊂ G act on G/U, G/U− on the left.
Recall that K\G/U = K\G/U− = KM\M .
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3.1.1. The measure µM . Let µ̄ denote the direct image of the Haar measure on U under the
map

(3.1) U ↪→ G→ K\G/U− = KM\M,

where G = K ·M · U− by the Iwasawa decomposition. In other words, µ̄(Ω) is the measure of
U ∩ (K ·Ω ·U−) ⊂ U , where Ω ⊂ KM\M . Since (3.1) is equivariant with respect to the action
of KM by conjugation, µ̄ is right KM -invariant. Define µM to be the KM -bi-invariant measure
on M whose pushforward to KM\M equals µ̄.

3.1.2. A formula in terms of convolution. Let RKP denote the restriction of the intertwining
operator (2.6) to CKP−,+ → CKP,−. Then we have the formula

(3.2) RKP (ϕ)(m) = δP (m)−1

∫
U

ϕ(um)du = δP (m)−1

∫
M

ϕ(m1m)µM (m1)

where ϕ ∈ CKP−,+, m ∈M .

Comparing with (2.7), we see that

(3.3) ((δK ⊗ 1) ∗ ηP )(m, 1) = µM (m), m ∈M,

where we consider µM as a KM -bi-invariant function using the fixed Haar measure on M .

3.2. Satake isomorphism. We extend the classical Satake isomorphism to an isomorphism
between certain larger algebras (defined below) that are convenient for our purposes.

3.2.1. The completed Hecke algebra. Let H+
M denote the space of KM -bi-invariant measures on

M (with values in E) whose support is contained in ord−1
M (Λpos,Q

U ∩ Λ+
M ), where Λpos,Q

U is the
rational cone defined in §2.3.6.

Remark 3.2.2. Lemma 2.6.1 and (3.3) imply that µM belongs to H+
M .

Lemma 3.2.3. (i) Suppose that Σ is a submonoid of Λ+
M such that if λ ∈ Λ+

M and there
exists ν ∈ Σ such that λ ≤M ν, then λ ∈ Σ. Then the vector space of compactly supported
KM -bi-invariant measures on M whose support is contained in ord−1

M (Σ) is closed under the
convolution product, so the vector space becomes an algebra.

(ii) If, in addition, Σ generates a strongly convex cone and the intersection of Σ with any shift
of Λpos

M is finite, then convolution extends, by continuity, to the space of all KM -bi-invariant

measures on M whose support is contained in ord−1
M (Σ). Then this space is also an algebra.

Proof. The lemma follows from the usual properties of the Hecke algebra. �

Lemma 2.3.7 implies that Σ = Λpos,Q
U ∩Λ+

M satisfies the condition in Lemma 3.2.3(i), and one

observes from the definition that Λ+
U also satisfies condition (ii). Therefore H+

M is an algebra
with respect to convolution.

3.2.4. Let H+
T denote the space of KT -bi-invariant measures on T whose support is contained

in ord−1
T (Λpos,Q

U ∩Λ). Lemma 3.2.3(ii) implies that H+
T is an algebra with respect to convolution.

Observe that the Weyl group of M acts on H+
T .

Using our fixed Haar measures, we identify locally constant functions on M (resp. T ) with
locally constant measures on M (resp. T ). We also fix the Haar measure on U−B ∩M such that

U−B ∩KM has measure 1.
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Lemma 3.2.5. The usual Satake transform extends to an isomorphism CT : H+
M → (H+

T )WM

given by the formula

(3.4) CT(h)(t) = δB∩M (t)−1/2

∫
U−B∩M

h(tn̄)dn̄,

where h ∈ H+
M is considered as a function on M .

Here CT stands for ‘constant term’. Since the image of the Satake transform is WM -invariant,
(3.4) does not depend on the choice of Borel subgroup of M .

Proof. Let 1ord−1
M (λ) denote the characteristic function of ord−1

M (λ) ⊂M for λ ∈ Λ+
M . It is known

(cf. [14, §4.2]) that CT(1ord−1
M (λ)) does not vanish on ord−1

T (λ′), λ′ ∈ Λ+
M , only if λ′ ≤M λ. Thus

we deduce that CT is well-defined and an isomorphism from the usual Satake isomorphism and

the fact that Λpos,Q
U ∩ Λ+

M satisfies Lemma 3.2.3. �

Remark 3.2.6. Note that the algebra H+
T is isomorphic to the completion of the semigroup

algebra of Λpos,Q
U ∩Λ at the augmentation ideal. In particular, it is a local ring, and ĥ ∈ H+

T is

a unit if and only if ĥ(1) 6= 0. We deduce that H+
M and (H+

T )WM are also complete local rings.

3.3. Gindikin–Karpelevich formula. In this subsection we rewrite the non-Archimedean
Gindikin–Karpelevich formula3 as a formula for CT(µM ) ∈ (H+

T )WM .

3.3.1. Recall that we defined δP (m) = |det AdLie(U)(m)| for m ∈ M . Let 2ρ̌P := 2ρ̌ − 2ρ̌M
be the sum of the positive roots in G that are not roots of M . For m ∈ M , we have δP (m) =

q
−〈2ρ̌P ,ordM (m)〉
v .

For λ ∈ Λ, let 1ord−1
T (λ) denote the characteristic function of ord−1

T (λ) ⊂ T . Set

eλ = q〈ρ̌P ,λ〉v · 1ord−1
T (λ) ∈ H

+
T .

Proposition 3.3.2. We have

(3.5) CT(µM ) =
∏

α∈Φ+
G−ΦM

1− q−1
v eα

1− eα
,

where the r.h.s. is considered as an element of (H+
T )WM by Remark 3.2.6.

Proof. For the purpose of this proof, we may assume E = Q (since µM takes values in Q). Let
λ̌ ∈ Λ̌⊗C satisfy Re〈λ̌, α〉 > 0 for every positive coroot α of G. Let χλ̌ be the unramified

character T → C× sending t 7→ q
−〈λ̌,ordT (t)〉
v . Define the function φK,λ̌ on G by

φK,λ̌(k · t · n̄) = χλ̌(t)δ
1/2
B (t), k ∈ K, t ∈ T, n̄ ∈ U(B−)

where G = K · B− by the Iwasawa decomposition. The Gindikin–Karpelevich formula for
non-Archimedean local fields [33, p. 18] implies that∫

M

φK,λ̌(m)µM,v(m) =

∫
U

φK,λ̌(u)du =
∏

α∈Φ+−ΦM

1− q−1−〈λ̌,α〉
v

1− q−〈λ̌,α〉v

where the l.h.s. converges absolutely. Integrating over M = KM · (B− ∩M) using the Iwasawa

decomposition (cf. [14, Equations (5), (10)]), the l.h.s. equals
∫
T
χλ̌(t)δ

1/2
P (t) CT(µM,v)(t)dt.

3The Gindikin–Karpelevich formula for non-Archimedean local fields is due to Langlands [33] and MacDonald
[35] independently, with a generalization by Casselman [15].
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Note that for ν ∈ Λ, we have
∫
T
χλ̌(t)δ

1/2
P (t)eν(t)dt = q

−〈λ̌,ν〉
v . Therefore equation (3.5) holds

after integrating against χλ̌ for any λ̌ ∈ Λ̌⊗C satisfying Re〈λ̌, α〉 > 0 for all α ∈ Φ+
G. This

implies the equality (3.5) of elements in (H+
T )WM . �

Corollary 3.3.3. The measure µM is invertible in H+
M .

Proof. The Gindikin–Karpelevich formula (3.5) implies that CT(µM )(1) = 1, so CT(µM ) is
invertible by Remark 3.2.6. The extended Satake isomorphism (3.4) then implies that µM is
invertible. �

3.3.4. Let νM ∈ H+
M denote the convolution inverse of µM . We consider it as aKM -bi-invariant

measure on M .

Corollary 3.3.5. The operator RKP : CKP−,+ → CKP,− is an isomorphism. The inverse is given

by the formula

(3.6) (RKP )−1(ϕ)(m) =

∫
M

δP (m1m)ϕ(m1m)νM (m1),

where ϕ ∈ CKP,−, m ∈M .

Proof. Define ξ ∈ Cb(XP )K×K by ξ(m, 1) = νM (m) for m ∈ M . The fact that νM belongs to
H+
M implies that ξ indeed has bounded support. Then the r.h.s. of (3.6) equals Tξ(ϕ), where

Tξ : CP,− → CP−,+ is defined in Lemma 2.5.2. In particular, the r.h.s. of (3.6) is well-defined.

Note that by the Iwasawa decomposition, CKP−,+ and CKP,− identify with the same space of

KM -invariant functions on M . Equation (3.2) expresses RKP in terms of the convolution action
of µM on CKP−,+ = CKP,−. This action is compatible with the convolution product of H+

M . Thus

we deduce from invertibility of µM that RKP is an isomorphism with inverse given by (3.6). �

3.4. Langlands’ reformulation. We will reformulate the Gindikin–Karpelevich formula in
terms of Langlands’ reinterpretation of the classical Satake isomorphism.

3.4.1. Let Ǧ (resp. M̌, Ť ) denote the Langlands dual group of G (resp. M, T ) over E. Let
ǔP be the Lie algebra corresponding to the roots Φ+

G − ΦM in Ǧ, so ǔP is a M̌ -module by the
adjoint action AdǔP .

The map 1ord−1
T (λ) 7→ λ defines an isomorphism C∞c (T )KT ∼= E[Ť ], which is compatible

with the WM -action. Recall that E[Ť ]WM = E[M̌ ]M̌ , where M̌ acts on itself by conjugation.
Let K(Rep(M̌)) denote the Grothendieck group of the abelian category of finite dimensional
M̌ -modules. Give K(Rep(M̌)) the tensor product multiplication. Then we have an algebra
isomorphism by taking characters:

K(Rep(M̌))⊗
Z
E

Ch−→ E[M̌ ]M̌ : [V ] 7→ tr(σ, V ), σ ∈ M̌.

3.4.2. Let Rep+(M̌) denote the subcategory of M̌ -modules with weights contained in Λpos,Q
U .

Since 2ρ̌P ∈ Λ̌ is perpendicular to all coroots of M , we may consider it as a central cocharacter of
M̌ . We have a non-negative grading of the Grothendieck group K(Rep+(M̌)) by the eigenvalues
of 2ρ̌P . Let K+(Rep(M̌)) be the completion of K(Rep+(M̌)) with respect to the augmentation
ideal of this grading. Then one sees that Ch−1 ◦CT extends to an algebra isomorphism

S : H+
M → K+(Rep(M̌))⊗̂E,

where ⊗̂ is the completed tensor product.
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3.4.3. Let V ∈ Rep(M̌). Consider the expression
∑
n t

n[Symn V ], which is a formal series in

K(Rep(M̌))[[t]]. Here t is a formal parameter (that is unrelated to the torus). It is well-known
that the inverse of this series equals

Λ(t, V ) :=
∑
n

(−t)n[∧nV ].

If we consider coefficients in E[t] rather than E, we have tr(σ,Λ(t, V )) = det(Id−σ · t, V ) for
σ ∈ M̌(E).

3.4.4. Suppose that the weights of V are contained in Λpos,Q
U − {0}. Let τ ∈ E×. Then the

series

S(τ, V ) :=
∑
n

τn[Symn V ]

is a well-defined element of the completed Grothendieck group K+(Rep(M̌))⊗̂E, and it is the
inverse of Λ(τ, V ) ∈ K+(Rep(M̌))⊗̂E.

3.4.5. The central cocharacter 2ρ̌P defines a non-negative M̌ -module grading of ǔP by the
eigenspace decomposition. Let gri(ǔP ) denote the eigenspace of AdǔP (2ρ̌P ) with weight 2ai,
where ai is a positive integer. Then in the above language, equation (3.5) and its multiplicative
inverse have the reformulations

(3.7) S(µM,v) =
∏
i

Λ(q−1+ai
v , gri(ǔP ))

Λ(qaiv , gri(ǔP ))
, S(νM,v) =

∏
i

Λ(qaiv , gri(ǔP ))

Λ(q−1+ai
v , gri(ǔP ))

.

The formula for S(µM,v) essentially appears in [33, p. 33].

Using the equality Λ(q−1+ai
v , gri(ǔP ))−1 = S(q−1+ai

v , gri(ǔP )), we have the expansion

(3.8)
Λ(qaiv , gri(ǔP ))

Λ(q−1+ai
v , gri(ǔP ))

=

(∑
n

(−1)n[∧n gri(ǔP )] · qainv

)(∑
n

[Symn gri(ǔP )] · q−n+ain
v

)
in K+(Rep(M̌))⊗̂E.

3.5. Asymptotics on K-invariants. Let δK ∈ C∞c (G) denote the characteristic function of
K. Note that AsympP (δK) = (δK ⊗ 1) ∗ ξP = (1⊗ δK) ∗ ξP is K ×K-invariant. Using (3.6)
and (2.10), we deduce the formula

(3.9) AsympP (δK)(m, 1) = νM (m).

When P = B is a Borel subgroup and Fv has characteristic 0, (3.9) is proved in [44, Theorem
6.8] in the more general setting of spherical varieties.

Remark 3.5.1. Note that νM (1) = CT(νM )(1) = 1 by the explicit formula (3.5). Thus (3.9)
implies that AsympP (δK) takes constant value 1 on the K ×K orbit of (1, 1) ∈ XP .

In the notation of Remark 2.3.11 we also see that AsympP (δK) has support contained in
XP(ov) since νM ∈ H+

M .

4. The bilinear form B

We work over the function field F with adele ring A. Let X be the corresponding geometri-
cally connected smooth projective curve over Fq. In this section, we define the bilinear form B

and prove Theorem 1.2.4.
In our notation, we will add a subscript v when referring to the objects or spaces defined in

§2 over Fv (e.g., CP becomes CP,v, AsympP becomes AsympP,v).
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4.1. Definition of B. Fix a Haar measure on G(A). For f1, f2 ∈ Ac, set

(4.1) B(f1, f2) :=
∑
P

(−1)dimZ(M) ·BP (f1, f2)

where the sum ranges over standard parabolic subgroups P ⊂ G with Levi subgroup M , and
BP is a G(A)-invariant bilinear form defined in §4.2.4 below. The form B is G(A)-invariant
since each BP is. It will also be evident that B is symmetric. Let us note that BP and B

slightly depend on the choice of a Haar measure on G(A).

4.2. Definition of BP . Fix a standard parabolic subgroup P . Define the boundary degener-
ation XP = (G×G)/(P ×M P−) as in §2.2.2, where XP is now a strongly quasi-affine variety
over Fq. Let XP denote the affine closure.

The topological space XP (A) is isomorphic to the restricted product of XP (Fv) with respect
to the compact subspaces XP (ov). The topological space XP (A) is isomorphic to the restricted
product of XP (Fv) with respect to XP (ov). Recall that the topology on XP (A) is not the
subspace topology induced from XP (A).

We say that a function on XP (A) has bounded support if the support is relatively compact in
XP (A). Let Cb(XP (A)) denote the space of K ×K-finite C∞ functions on XP (A) with bounded
support.

Note that the action of P−×P on 1 ∈ G and (1, 1) ∈ XP have the same stabilizer equal to the
diagonal embedding of M . Fix the measure on XP (A) to be the unique G(A)×G(A)-invariant
measure such that on the P−(A)×P (A)-orbit of (1, 1), it coincides with the restriction of the
chosen Haar measure on G(A) to P−(A) · P (A).

4.2.1. Define AsympP : C∞c (G(A))→ Cb(XP (A)) by

(4.2) AsympP (⊗
v
fv) = ⊗

v
AsympP,v(fv)

where fv ∈ C∞c (G(Fv)) and fv = δKv is the characteristic function of Kv for almost all
v. Observe that AsympP is well-defined since AsympP,v(δKv ) equals 1 on XP (ov) by Re-
mark 3.5.1. The product ⊗v AsympP,v(fv) has bounded support in XP (A) because the support

of AsympP,v(δKv ) is contained in XP (ov) by Remark 3.5.1.

4.2.2. Define the generalized function ξP ∈ S∗(XP (A)) by

(4.3) ξP = ⊗
v
ξP,v

where ξP,v ∈ S∗(XP (Fv)) is defined by (2.8). Equation (4.3) is well-defined because any element
of C∞c (XP (A)) is Kv-invariant for almost all v, and δKv ∗ ξP,v = AsympP,v(δKv ) equals 1 on
XP (ov) by Remark 3.5.1. From (2.9) we also deduce that ξP has essentially bounded support,

i.e., for any f̃ ∈ C∞c (G(A)), the convolution (f̃ ⊗ 1) ∗ ξP = (1⊗ f̃∨) ∗ ξP = AsympP (f̃) has

bounded support, where f̃∨(g) := f̃(g−1).

4.2.3. Define a bilinear form B̃P : C∞c (G(A))⊗C∞c (G(A))→ E by the formula

(4.4) B̃P (f̃1, f̃2) :=
∑

x∈XP (F )

AsympP (f̃∨1 ∗ f̃2)(x), f̃1, f̃2 ∈ C∞c (G(A)),

where f̃∨1 (g) := f̃1(g−1), and ∗ denotes convolution over G(A). The sum is finite because

AsympP (f̃∨1 ∗ f̃2) has bounded support, and the intersection of the discrete subset XP (F ) ⊂
XP (A) with a bounded subset of XP (A) is finite.
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Using (2.9), one can also write (4.4) as

(4.5) B̃P (f̃1, f̃2) =
∑

x∈XP (F )

∫
(G×G)(A)

f̃1(g1)f̃2(g2)ξP ((g1, g2)x)dg1dg2.

For g ∈ G(A), let δg denote the delta (generalized) function at g. Observe that

(4.6) B̃P (δg ∗ f̃1, δg ∗ f̃2) = B̃P (f̃1, f̃2), g ∈ G(A).

By (G×G)(A)-equivariance of AsympP , we have

(4.7) B̃P (f̃1 ∗ δg1 , f̃2 ∗ δg2) = B̃P (f̃1, f̃2), g1, g2 ∈ G(F ).

4.2.4. We define the bilinear form BP : Ac⊗Ac → E as follows. For f1, f2 ∈ Ac, there exist
f̃1, f̃2 ∈ C∞c (G(A)) whose direct images are f1, f2. Set

(4.8) BP (f1, f2) = B̃P (f̃1, f̃2),

which does not depend on the choices of f̃1, f̃2 by (4.7). The form BP is G(A)-invariant by
(4.6). Formula (4.8) was suggested by Y. Sakellaridis in a private communication.

4.3. Restriction of BP to AKc . Fix the Haar measure on G(A) so that K has measure 1. Let

f̃1, f̃2 ∈ C∞c (G(A))K be left K-invariant functions. Let δK = ⊗ δKv denote the characteristic
function of K on G(A). Note that averaging δK ∗ δ1 = δ1 ∗ δK = δK . Let f1, f2 ∈ AKc denote

the direct images of f̃1, f̃2. We deduce from (4.5) that

(4.9) BP (f1, f2) =

∫
(G×G)(A)/(G×G)(F )

f1(g1)f2(g2)bP (g1, g2)dg1dg2,

where bP (g1, g2) =
∑

XP (F ) AsympP (δK)((g1, g2)x).

4.3.1. Observe that bP is obtained from AsympP (δK) ∈ Cb(XP (A))K×K by pull-push along
the diagram

(4.10) (G×G)(A)/(G×G)(F )← (G×G)(A)
(G×G)(F )
× XP (F )→ XP (A).

4.4. Geometric interpretation. As explained in [26, §1.2.3, Remark 1.2.17], we can identify4

the double cosets K\G(A)/G(F ) with |BunG(Fq)|, the isomorphism classes of G-bundles on X.
Let us give a geometric interpretation of bP as a function on (BunG×BunG)(Fq).

4.4.1. Let F1
G,F

2
G ∈ BunG(Fq) be G-bundles. Fixing trivializations of FiG×X Spec(ov) for all

places v, we get lifts of FiG ∈ K\G(A)/G(F ) to gi ∈ G(A)/G(F ) for i = 1, 2. The pre-image of

(g1, g2) in (G×G)(A)×(G×G)(F ) XP (F ) under the left arrow of (4.10) is in bijection with the
set of rational sections of the morphism

(XP )F1
G,F

2
G

:= (F1
G×
X
F2
G)

G×G
× XP → X.

Given a rational section β ∈ (XP )F1
G,F

2
G

(F ), we can restrict to (XP )F1
G,F

2
G

(Fv) for any place v,

which is isomorphic to XP (Fv) by the trivializations of FiG×X Spec(ov), i = 1, 2. This describes
the right arrow in (4.10).

4The identification relies on the assumptions that any G-bundle FG on X is trivial when restricted to SpecF

and Spec ov for each place v. We know the restriction of FG to Spec ov is trivial by smoothness of G and Lang’s
theorem (any G-bundle over a finite field is trivial). The generic triviality of FG|SpecF follows from the Hasse

principle for split reductive groups over a function field, which is proved by [28].
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4.4.2. Let (XP )F1
G,F

2
G

:= XP
G×G
× (F1

G×
X
F2
G). We have an isomorphism (XP )F1

G,F
2
G

(ov) ∼=

XP (ov) compatible with the aforementioned identification (XP )F1
G,F

2
G

(Fv) ∼= XP (Fv).

Remark 3.5.1 implies that the support of AsympP (δK) is contained in XP (A) ∩ XP (oA).
Therefore AsympP (δK) does not vanish at the image of β in XP (A) only if β extends to a
regular section X → (XP )F1

G,F
2
G

. Such an extension is unique since XP is separated. Thus

(4.11) bP (F1
G,F

2
G) =

∑
β

∏
v

AsympP,v(δKv )(βv)

where the sum is over sections β : X → (XP )F1
G,F

2
G

that generically land in the non-degenerate

locus (XP )F1
G,F

2
G

, and βv ∈ XP (Fv) is the image of β under the right arrow in (4.10). The
Kv ×Kv-orbit of βv does not depend on the choice of trivializations.

Note that AsympP,v(δKv )(βv) = 1 if βv ∈ XP (ov). Thus the product is only over those places

v that β sends to the degenerate locus (XP )F1
G,F

2
G
− (XP )F1

G,F
2
G

.

Remark 4.4.3. The product
∏
v AsympP,v(δKv )(βv) is a K-invariant function on XP (A) ∩

XP (oA). Its value does not depend on the choice of trivializations of FiG×X Spec(ov), so we
may also consider it as a function AsympP (δK)(β) of β.

Remark 4.4.4. Theorem C.9.2 interprets AsympP (δK)(β) as the trace of the geometric Frobe-
nius acting on the ∗-stalks of an `-adic sheaf.

Proof of Theorem 1.2.4. Let F1
G,F

2
G ∈ BunG(Fq). Using the geometric interpretation (4.11)

and Theorem C.7.2, we get the equality

b(F1
G,F

2
G) =

∑
P

(−1)dimZ(M)bP (F1
G,F

2
G),

where the sum ranges over standard parabolic subgroups. The theorem now follows from the
definition of B and the formula (4.9). �

5. Global intertwining operators

Let P denote a standard parabolic subgroup. We define the subspaces CP,± of functions
on G(A)/M(F )U(A) and recall the definition of the constant term operator. We show that
the product of the local intertwining operators induces an operator RP : CP−,+ → CP,−, and
we prove that RP is invertible (Proposition 5.5.2). We prove Theorem 1.4.3 at the end of the
section.

We continue to add a subscript v to the notation of §2 when appropriate.

5.1. The spaces CP , CP,±.

5.1.1. Let CP denote the space of K-finite C∞ functions on G(A)/M(F )U(A). Let CP,c ⊂ CP
stand for the subspace of compactly supported functions.

As in §4.4, the quotient KM\M(A)/M(F ) identifies with |BunM (Fq)|, the set of isomorphism
classes of M -bundles on X. Recall that this identification uses the fact that any M -bundle on
X is generically trivial. Since we have an exact sequence

0 = H1(SpecF,U)→ H1(SpecF, P )→ H1(SpecF,M),

we deduce that any P -bundle on X is also generically trivial. This allows us to make the
identification K\G(A)/P (F ) = |BunP (Fq)| by the decomposition G(A) = K ·P (A). This space
projects to K\G(A)/M(F )U(A) = |BunM (Fq)|.
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5.1.2. Let ΛG,P = π1(M) denote the quotient of Λ by the subgroup generated by the coroots
of M . It is well-known that there is a bijection degM : π0(BunM ) ' π1(M). Note that

ΛQ
G,P := ΛG,P ⊗Q = ΛQ

M/[M,M ] = ΛQ
Z0(M). We call the composition

BunM → π1(M)→ ΛQ
G,P

the slope map. We define the map

degQ
P : G(A)/U(A)→ ΛQ

G,P

by setting degQ
P (g) equal to the slope of the M -bundle corresponding to g ∈ G(A). Equivalently,

if g = (gv), gv ∈ G(Fv), then degQ
P (g) =

∑
v degP,v(gv), where degP,v is as defined in §2.5.

5.1.3. Let Λpos,Q
G,P denote the image of Λpos,Q

G under the projection ΛQ → ΛQ
G,P . We define the

global spaces CP,± analogously to the definitions of the local spaces CP,±,v in §2.5:

Let CP,+ ⊂ CP be the set of all functions ϕ ∈ CP such that degQ
P (suppϕ) is contained in

S0 + Λpos,Q
G,P for some finite subset S0 ⊂ ΛQ

G,P . Similarly, let CP,− ⊂ CP denote the set of all

ϕ ∈ CP such that −degQ
P (suppϕ) is contained in S0 + Λpos,Q

G,P for some finite set S0.
One similarly defines the spaces CP−,± ⊂ CP− . We emphasize that CP−,+ is defined with

respect to the cone −Λpos,Q
G,P . So CP−,± is the space of all ϕ ∈ CP− such that ∓degQ

P−(suppϕ)

is contained in S0 + Λpos,Q
G,P for some finite set S0.

Remark 5.1.4. In the case P = G, we have Λpos
G,G = 0. So we observe that CG,+ = CG,− ⊂ A is

the set of functions f ∈ A such that degQ
G(supp f) is finite.

5.2. The Harder–Narasimhan–Shatz stratification. Before discussing the constant term
operator, we need to recall some reduction theory, which we state in terms of the Harder–
Narasimhan–Shatz stratification of BunM . This stratification of BunM was defined in [29, 48,
49] in the case M = GL(n). For any reductive M it was defined in [37, 38, 39] and [5, 4]. We
also refer the reader to [46].

Let Λ+,Q
M denote the rational cone corresponding to the monoid Λ+

M . For λ ∈ Λ+,Q
M , we

follow the notation of [20, Theorem 7.4.3] and let Bun
(λ)
M ⊂ BunM denote5 the quasi-compact

locally closed reduced substack of M -bundles with Harder–Narasimhan coweight λ. We have

a map HN : |BunM (Fq)| → Λ+,Q
M , which sends an M -bundle to its unique Harder–Narasimhan

coweight. We will also use HN to denote the composition

HN : G(A)/M(F )U(A)→ |BunM (Fq)| → Λ+,Q
M .

The map HN will be our global analog of the map ordM,v defined in (2.2).

For λ ∈ ΛQ, let [λ]P denote the projection of λ to ΛQ
G,P . Then for x ∈ G(A)/M(F )U(A), we

have [HN(x)]P = degQ
P (x).

Remark 5.2.1. There exists an integer N such that the image of HN lies in 1
NΛ+

M .

5In loc. cit. the stratification is defined over an algebraically closed field. To define the stratification over
Fq , we first base change to Fq and then note that the Harder–Narasimhan strata are defined over Fq by Galois

invariance.
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5.3. The constant term operator. We will always fix the Haar measure on U(A) so that
U(A)/U(F ) has measure 1.

In §1.1, we defined the spaces A and Ac ⊂ A. The constant term operator CTP : A → CP
is defined by the formula

(5.1) CTP (f)(g) =

∫
U(A)/U(F )

f(gu)du, f ∈ A, g ∈ G(A).

In other words, CTP is the pull-push along the diagram

(5.2) G(A)/G(F )← G(A)/P (F )→ G(A)/M(F )U(A).

Recall from §2.3.4 what it means for a subset of ΛQ to be bounded above (resp. below) with

respect to the partial (rational) ordering ≤Q
G.

Lemma 5.3.1. Let f ∈ Ac. Then HN(supp CTP (f)) ⊂ Λ+,Q
M is bounded above. Consequently,

CTP : A→ CP sends Ac to CP,−.

Proof. If we pass to K-orbits in the diagram (5.2), then we get the Fq-points of the diagram of
stacks

(5.3) BunG ← BunP → BunM .

For θ ∈ Λ+,Q
G , let Bun

(≤θ)
G ⊂ BunG denote the open substack of G-bundles having Harder-

Narasimhan coweight ≤Q
G θ. Let f ∈ Ac. Then the K-orbits of its support are contained

in ⋃
θ∈S

Bun
(≤θ)
G (Fq)

for a finite subset S ⊂ Λ+,Q
G . It follows from the definition of Harder-Narasimhan coweight that

the image of

Bun
(λ)
P := BunP ×

BunM
Bun

(λ)
M , λ ∈ Λ+,Q

M

intersects Bun
(≤θ)
G only if λ ≤Q

G θ (cf. [20, Theorem 7.4.3(3)]). Now by pull-push along the

diagram (5.3), we conclude that HN(supp CTP (f)) is contained in the set of λ ∈ Λ+,Q
M such

that λ ≤Q
G θ for some θ ∈ S. Therefore HN(supp CTP (f)) is bounded above.

Since [HN(x)]P = degQ
P (x), we deduce that degQ

P (supp CTP (f)) ⊂ {[θ]P − µ | θ ∈ S, µ ∈
Λpos,Q
G,P }. By definition, this means that CTP (f) ∈ CP,−. �

5.4. The operator RP : CP−,+ → CP,−. Let Z denote the space of pairs (g1, g2), where g1 ∈
G(A)/P−(F ), g2 ∈ G(A)/P (F ) have equal image in G(A)/(P− · P )(F ). We have projections
from Z to G(A)/P−(F ) and G(A)/P (F ).

Define RP : CP−,+ → CP to be the pull-push along the diagram

G(A)/M(F )U−(A)← G(A)/P−(F )← Z → G(A)/P (F )→ G(A)/M(F )U(A).

Equivalently, RP is given by the explicit formula

(5.4) RP (ϕ)(g) =

∫
U(A)

ϕ(gu)du, ϕ ∈ CP−,+, g ∈ G(A).

It is evident from the definition that RP is G(A)-equivariant.

Proposition 5.4.1. The operator RP : CP−,+ → CP is well-defined, and the image of RP is
contained in CP,−. More specifically, for ϕ ∈ CP−,+ we have

HN(suppRP (ϕ)) ⊂ {λ− µ | λ ∈ HN(suppϕ), µ ∈ Λpos,Q
G }.
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Proof. Let (g1, g2) ∈ Z. The quotient (K ×K)\Z identifies with the set of isomorphism classes
of the Fq-points of the stack Maps◦(X,P−\G/P ) of maps generically landing in P−\(P− ·P )/P .
By [10, Proposition 3.2], the stack Maps◦(X,P−\G/P ) is isomorphic to the relative version of

the open Zastava space
◦
ZBunM . In particular, there is a map

◦
ZBunM → H+

M , where H+
M :=

Maps◦(X,M\M/M) is the Hecke substack introduced in §A.5. This map is induced from
the contraction G → M defined in [51, §4.2.9]. The image of g1 in K\G(A)/M(F )U−(A) =
|BunM (Fq)| defines an M -bundle F1

M . Similarly, the image of g2 in K\G(A)/M(F )U(A) =
|BunM (Fq)| defines F2

M . Then (g1, g2) ∈ Z maps to a point (F1
M ,F

2
M , βM ) ∈ H+

M (Fq), where

βM is an M -morphism F2
M → F1

M in the language of §A.1.

Let λ1, λ2 ∈ Λ+,Q
M be the Harder-Narasimhan coweights of F1

M ,F
2
M respectively. Then Re-

mark A.5.1 implies that λ1 − λ2 ∈ wM0 Λpos,Q
G . The definition of CP−,+ implies that the set of

λ1 ∈ Λ+,Q
M for which ϕ(g1) 6= 0 satisfy −[λ1]P ∈ S0 + Λpos,Q

G,P for a finite set S0. We deduce that

the intersection of HN(suppϕ) with λ2 +wM0 Λpos,Q
G is finite. Thus RP (ϕ)(g2) is an integral over

the K-orbits of G(A)/M(F )U−(A) corresponding to the union of Bun
(λ1)
M (Fq) ranging over a

finite set of λ1, i.e., RP (ϕ) is well-defined.

Remark A.5.1 also gives the inequality λ2 ≤Q
G λ1, which proves the second statement of the

proposition. It immediately follows that RP (ϕ) ∈ CP,−. �

5.5. Invertibility of RP . Below we will prove Proposition 5.5.2, which says that the operator
RP : CP−,+ → CP,− is invertible. We deduce the proposition from the local results of §2.

5.5.1. Fix the Haar measure on G(A). Recall that we defined a generalized function ξP on
XP (A) by (4.3), which slightly depends on the choice of measure on G(A). The Haar measures
on G(A) and U(A) induce a G(A)-invariant measure on G(A)/U(A).

Proposition 5.5.2. The map RP : CP−,+ → CP,− is an isomorphism. The inverse is given by
the formula

(5.5) R−1
P (ϕ)(g2) =

∫
G(A)/U(A)

ϕ(g1)ξP (g1, g2)dg1, ϕ ∈ CP,−, g2 ∈ G(A).

Proof. Let us first show that the right hand side of (5.5) is well-defined for any ϕ ∈ CP,− and
g2 ∈ G(A). Since ϕ is K-finite, there exists a compact open subgroup K ′ =

∏
K ′v ⊂ K such

that ϕ is K ′-invariant. Let δK′ ∈ C∞c (G(A)) equal 1
mes(K′) times the characteristic function

of K ′. Recall that (δK′ ⊗ 1) ∗ ξP = AsympP (δK′) ∈ Cb(XP (A)), where AsympP is defined in
§4.2.1. Thus the r.h.s. of (5.5) equals∫

G(A)/U(A)

ϕ(g1) AsympP (δK′)(g1, g2)dg1.

Let ordM,v : XP (Fv)→ Λ+
M be the map (2.3). Proposition 2.3.5 implies that for every v there

exists a finite subset Sv ⊂ Λ such that

ordM,v(supp(AsympP,v(δK′v ))) ⊂ {θ − µ | θ ∈ Sv, µ ∈ Λpos,Q
U },

and we can take Sv = {0} for almost all v by Remark 3.5.1. For g1 ∈ G(A)/U(A), consider the

image of (g1, g2) in XP (A). Let F1
M ∈ Bun

(λ1)
M (Fq) (resp. F2

M ∈ Bun
(λ2)
M (Fq)) be the image of

g1 in K\G(A)/M(F )U(A) (resp. g2 in K\G(A)/M(F )U−(A)). Lemma A.4.1 implies that

(5.6) −
∑
v

logq(qv) · ordM,v(g1, g2) ≤Q
M λ1 − λ2 ≤Q

M −w
M
0

∑
v

logq(qv) · ordM,v(g1, g2).
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Let S = {
∑
v logq(qv) · λv | λv ∈ Sv}. Suppose AsympP (δK′)(g1, g2) 6= 0. Then we have

λ1 ∈ {λ2 − wM0 θ + µ | θ ∈ S, µ ∈ wM0 Λpos,Q
G }(5.7)

λ2 ∈ {λ1 + θ − µ | θ ∈ S, µ ∈ Λpos,Q
G }(5.8)

and we emphasize that S is a finite set depending only on the stabilizer in K of ϕ. From (5.7)
and the definition of ϕ ∈ CP,−, we conclude that the r.h.s. of (5.5) is a finite integral, which we
temporarily denote T (ϕ)(g2). From (5.8) we deduce that T (ϕ) defines an element in CP−,+.

It remains to show that T : CP,− → CP−,+ is inverse to RP . Let ϕ ∈ CP,−. Then (5.8) implies

that HN(suppT (ϕ)) ⊂ {λ + θ − µ | λ ∈ HN(suppϕ), θ ∈ S, µ ∈ Λpos,Q
G }. Proposition 5.4.1

implies in turn that

HN(suppRP (Tϕ)) ⊂ {λ+ θ − µ | λ ∈ HN(suppϕ), θ ∈ S, µ ∈ Λpos,Q
G }.

Therefore we deduce that to show RP ◦ T = id, it suffices to check the equality for ϕ ∈ CP,c.
Any such ϕ is the pushforward of an element in C∞c (G(A)/U(A)), which is isomorphic to the
restricted tensor product of CP,c,v over all places v. Since RP ◦ T is defined as a product of
local integrals, (RP ◦ T )(ϕ) = ϕ follows from Proposition 2.8.5.

Similarly, it suffices to check that T ◦ RP = id on ϕ ∈ CP−,c. This again follows from the
corresponding local statement Proposition 2.8.5. �

5.6. A formula for BP in terms of RP . We give a formula for the bilinear form BP defined
in §4.2 in terms of the global intertwining operator RP . This formula is the analog of [22,
Definition 3.1.1] for a general reductive group G.

5.6.1. Fix some Haar measure on G(A), and fix the Haar measure on U−(A) such that
mes(U−(A)/U−(F )) = 1. Then we get an invariant measure on G(A)/M(F )U−(A) and there-
fore a pairing between CP−,c and CP− defined by

(5.9) 〈ϕ1, ϕ2〉 :=

∫
G(A)/M(F )U−(A)

ϕ1(x)ϕ2(x)dx.

Lemma 5.3.1 implies that this pairing is well-defined when ϕ1 ∈ CP−,+ and ϕ2 ∈ CTP−(Ac).

Proposition 5.6.2. For any f1, f2 ∈ Ac, one has

(5.10) BP (f1, f2) = 〈R−1
P CTP (f1),CTP−(f2)〉.

Proof. Choose f̃1, f̃2 ∈ C∞c (G(A)) that pushforward to f1, f2. Then

CTP (f1)(g) =
∑

γ∈G(F )/U(F )

∫
U(A)

f̃1(guγ−1)du, g ∈ G(A).

The formula (5.5) directly gives

(R−1
P ◦ CTP )(f1)(g2) =

∑
γ∈G(F )/U(F )

∫
G(A)

f̃1(g1γ
−1)ξP (g1, g2)dg1.
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Let f̃∨1 (g) := f̃1(g−1). By left G(A)-equivariance of AsympP , the right hand side of (5.10)
equals∫
G(A)/P−(F )

∑
γ∈G(F )/U(F )

AsympP (f̃∨1 )(γ, g)f2(g)dg

=

∫
G(A)/G(F )

∑
x∈XP (F )

AsympP (f̃∨1 )((1, g)x)f2(g)dg.

By right G(A)-equivariance of AsympP and (4.4), we conclude that the right hand side equals
BP (f1, f2). �

Proof of Theorem 1.4.3. The theorem follows immediately from (4.1) and Proposition 5.6.2. �

6. The operator L and its inverse

We first recall basic facts from the theory of Eisenstein series. Then we define the operator
L : Ac → A in terms of the Eisenstein operator, the inverse of the standard intertwining
operator, and the constant term operator. Motivated by a characterization of Ac due to Harder,
we define the subspace Aps-c ⊂ A of “pseudo-compactly” supported functions in §6.6. We check
that L sends Ac to this new subspace Aps-c. Lastly, we prove that L : Ac → Aps-c is invertible
in Theorem 6.6.3 and give the formula for its inverse.

We will continue to use the notation from §5. In this section, we will assume that the field
of coefficients E equals C.

6.1. Constant term revisited. Recall that in Lemma 5.3.1, we showed that the constant
term operator CTP : A → CP sends Ac to CP,− for all parabolic subgroups P . The proof of
[28, Theorem 1.2.1] shows that the converse is also true:

Lemma 6.1.1. For f ∈ A, we have f is compactly supported if and only if CTP (f) lies in
CP,− for all standard parabolics P .

Proof. The “only if” direction is proven by Lemma 5.3.1.
Note that if f ∈ CG,− ⊂ A, then degQ

G(supp f) is finite. Therefore to prove the “if” direction,
we may assume that f ∈ A and there is a fixed θ ∈ ΛQ such that

degQ
P (supp CTP (f)) ⊂ −Λpos,Q

G,P + [θ]P

for all standard parabolics P . By reduction theory, there exists a number c such that any
x ∈ G(A)/G(F ) has a representative g ∈ G(A) with 〈α̌,degQ

B(g)〉 > c for all simple roots α̌ of

G. Suppose f(g) 6= 0 for g ∈ G(A) with λ = degQ
B(g) ∈ ΛQ as above. By [36, Lemma I.2.7]

(cf. [28, Lemma 1.2.2]), there exists c′ such that if 〈α̌, λ〉 > c′ for all simple roots α̌ which are
not simple roots of M for some standard parabolic P with Levi M , then CTP (f)(g) = f(g).
Let M be the Levi such that the simple roots of M are precisely the simple roots α̌ of G
such that 〈α̌, λ〉 ≤ c′. Then CTP (f)(g) = f(g) 6= 0 implies that degQ

P (g) = [λ]P lies in

−Λpos,Q
G,P + [θ]P . On the other hand the choice of M implies that λ belongs in a translate of

−Λ+,Q
M ⊂ −Λpos,Q

M + ΛQ
Z(M). We deduce that the set of all possible λ is bounded above. We also

have 〈α̌, λ〉 > c for all simple roots α̌, so there are in fact only finitely many possibilities for λ.
We conclude that f is compactly supported. �

For P = MU a standard parabolic, we also use the notation CTGM := CTP below.



26 JONATHAN WANG

Let P1 ⊂ P be standard parabolic subgroups with Levi subgroups M1 ⊂ M . Then the
constant term operator CTMM1

can be considered as an operator CTMM1
: CP → CP1

. We say

that ϕ ∈ CP is M -cuspidal if CTMM1
(ϕ) = 0 for all standard Levi subgroups M1 ⊂M .

6.2. Eisenstein operator. Let P = MU be a parabolic subgroup of G. We define the Eisen-
stein operator6 EisP : CP,c → Ac to be the pull-push along the diagram

(6.1) G(A)/M(F )U(P )(A)← G(A)/P (F )→ G(A)/G(F ),

where the left arrow is proper. Explicitly,

EisP (ϕ)(g) :=
∑

γ∈G(F )/P (F )

ϕ(gγ), ϕ ∈ CP,c, g ∈ G(A).

We also use the notation EisGM := EisP for P standard.
It is well known that

(6.2) 〈CTP (f1), ϕ2〉 = Bnaive(f1,EisP (ϕ2))

for f1 ∈ A, ϕ2 ∈ CP,c. By this adjunction, we see that it is actually possible to define EisP (ϕ2)
for any ϕ2 such that 〈ϕ1, ϕ2〉 is finite for all ϕ1 ∈ CTP (Ac). Lemma 5.3.1 implies that all
ϕ2 ∈ CP,+ satisfy this condition. Thus EisP extends to an operator

EisP : CP,+ → A.

6.3. Intertwining operators revisited. In this section we recall some facts about the stan-
dard intertwining operators corresponding to elements of the Weyl group.

Let P = MU and P ′ = M ′U ′ be standard parabolic subgroups such that M ′ = wMw−1 for
some w ∈ W . Then the intertwining operator7 Rw is an operator CP,c → CP ′ defined by the
explicit formula

(6.3) (Rwϕ)(g) =

∫
U ′(A)/(U ′(A)∩wU(A)w−1)

ϕ(guw)du.

Proposition 6.4.1 below implies that if ϕ ∈ CP,c, then Rwϕ ∈ CP ′,−. The same proposition also
implies that Rwϕ ∈ CP ′ converges absolutely for any ϕ ∈ CP,+.

We will use the extra notation RGM,w = Rw when necessary for clarity (note that the standard

parabolic P ′ is determined by its Levi wMw−1).
When P = MU and P ′ = M ′U ′ are two (not necessarily standard) parabolic subgroups

containing T and M ′ = wMw−1 for w ∈W , we will use the notation

RP ′:P,w : CP,c → CP ′,−

for the intertwining operator, which is defined by the same formula (6.3). We also use RP ′:P
to denote RP ′:P,1. So the operator RP considered in §5.4 is now denoted by RP :P− .

Let V ⊂ CP denote the subspace of functions ϕ ∈ CP such that RP ′:P,w(ϕ) converges
absolutely. Let V ′ ⊂ V denote the subspace of ϕ ∈ V such that RP ′:P,w(ϕ) is compactly
supported.

Proposition 6.3.1. The map RP ′:P,w : V ′ → CP ′,c is an isomorphism. The inverse map

R−1
P ′:P,w : CP ′,c → CP is an integral operator.

6The authors of [36] call it “pseudo-Eisenstein”.
7In [36, II.1.6], Rw is denoted M(w, π) for a cuspidal representation π. But we prefer to avoid multiple uses

of the letter M .
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Proof. It suffices to consider the case w = 1. Let ϕ ∈ V ′. Then ϕ′ := RP ′:Pϕ ∈ CP ′,c and
RP−:P ′(ϕ

′) ∈ CP−,− must equal RP−:Pϕ. The operator RP−:P : CP,+ → CP−,− is invertible by

Proposition 5.5.2, so we have (R−1
P−:P ◦RP−:P ′)(RP ′:Pϕ) = ϕ, which proves injectivity.

Now take ϕ′ ∈ CP ′,c. Since CP ′,c ⊂ CP ′,−, we have R−1
P ′:P ′−(ϕ′) ∈ CP ′−,+. Then ϕ :=

(RP :P ′−◦R−1
P ′:P ′−)(ϕ′) ∈ CP is well-defined. Moreover, RP ′:P (ϕ) = (RP ′:P ′−◦R−1

P ′:P ′−)(ϕ′) = ϕ′.
Hence ϕ ∈ V ′, and we have shown surjectivity of RP ′:P . �

Remark 6.3.2. The operators RP ′:P,w and R−1
P ′:P,w are defined on larger spaces of functions, but

we will not consider the corresponding support conditions in this article.

6.4. The composition CTP ′ ◦EisP . Let P = MU and P ′ = M ′U ′ be standard parabolic
subgroups of G. Let Φ̌+

M denote the set of positive roots of M .
Let ϕ ∈ CP,c be M -cuspidal. Then [36, Proposition II.1.7] gives the formula

(6.4) (CTP ′ ◦EisP )(ϕ) =
∑

w∈W (M,M ′)

(EisM
′

wMw−1 ◦RGM,w)(ϕ).

where W (M,M ′) := {w ∈W | w−1α̌ > 0, ∀α̌ ∈ Φ̌+
M ′ and wMw−1 is a standard Levi of M ′}.

Proposition 6.4.1. Let ϕ ∈ CP,+ be arbitrary. Then one has

(6.5) (CTP ′ ◦EisP )(ϕ) =
∑

w∈W•
M,M′

(EisM
′

wM1w−1 ◦RGM1,w ◦ CTMM1
)(ϕ)

where W •M,M ′ := {w ∈W | ∀α̌ ∈ Φ̌+
M , wα̌ > 0, ∀α̌ ∈ Φ̌+

M ′ , w
−1α̌ > 0} and M1 := M∩w−1M ′w,

and every term on the right hand side converges absolutely.

Proof. See the proof of [36, Proposition II.1.7]. �

6.5. The operator L : Ac → A. One has the operators

Ac
CTP−→ CP,−

R−1

P :P−−→ CP−,+
EisP−−→ A.

Thus we deduce that

(6.6) B(f1, f2) = Bnaive(Lf1, f2)

where the operator L : Ac → A is defined by

L :=
∑
P

(−1)dimZ(M) EisP− ◦R−1
P :P− ◦ CTP

and the sum ranges over the standard parabolic subgroups. Unlike the form B, the operator L
does not depend on the choice of Haar measure on G(A).

Observe that for f ∈ Ac cuspidal, we have Lf = (−1)dimZ(G)f .

Remark 6.5.1. Theorem 1.2.4 implies that the miraculous duality functor Ps-IdBunG,! defined in
[20, §4.4.8] is the D-module analog of the operator q− dim BunG ·LK : AKc → AK on K-invariants
via the functions–sheaves dictionary (cf. [22, §A.8.4]).

The following proposition shows the interplay between the operator L and the Eisenstein
operators.

Proposition 6.5.2. Let P be a standard parabolic subgroup. Let ϕ ∈ CP,c be M -cuspidal. Then

(L ◦ EisP )(ϕ) = (−1)dimZ(M)(EisP− ◦R−1
P :P−)(ϕ).
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Proof. Let P ′ be another standard parabolic subgroup. By formula (6.4),

(6.7) (EisP ′− ◦R−1
P ′:P ′− ◦CTP ′ ◦EisP )(ϕ) =

∑
w∈W (M,M ′)

(EisP ′− ◦R−1
P ′:P ′− ◦EisM

′

wMw−1 ◦RGM,w)(ϕ)

and each term on the r.h.s. converges absolutely. Let P ′1 ⊂ M ′ be the standard parabolic

subgroup with Levi wMw−1, so EisM
′

wMw−1 = EisP ′1 . One can check that

R−1
P ′:P ′− ◦ EisP ′1 = EisP ′1 ◦R

−1
P ′1U

′:P ′1U
′−

when either side converges absolutely (recall that R−1
P ′:P ′− is defined as a product of local inte-

grals by (5.5)). Let P ′2 = wM
′

0 P ′−1 wM
′

0 ⊂M ′. Let Q = P ′2U
′ be the standard parabolic subgroup

of G with Levi w′Mw′−1, w′ = wM
′

0 w. Then EisP ′1 ◦R
−1
P ′1U

′:P ′1U
′− = EisP ′−2

◦R−1

P ′−2 U ′:Q−
◦ wM ′0 ,

where wM
′

0 denotes right translation by a representative of wM
′

0 in M ′(F ).
From the definition (6.3), we have

(wM
′

0 ◦RGM,w)(ϕ)(g) =

∫
(U−
P ′2
U ′)(A)∩w′U−(A)w′−1

ϕ(guw′)du, g ∈ G(A).

If α̌ is a positive root of G not in M , then w′α̌ = wM
′

0 wα̌ must be negative if it is a root of M ′,
by definition of W (M,M ′). Thus U−P ′2

U ′∩w′U−w′−1 = U ′∩w′U−w′−1 and UP ′2U
′∩w′Uw′−1 =

U ′ ∩ w′Uw′−1. We deduce that RP ′−2 U ′:Q− = wM
′

0 ◦RGM,w ◦RP :Q−,w′−1 and therefore

(R−1
P ′1U

′:P ′1U
′− ◦ wM

′

0 ◦RGM,w)(ϕ) = R−1
P :Q−,w′−1(ϕ)

for ϕ ∈ CP,c. Next, observe that EisP ′− ◦EisP ′−2
= EisQ− . Thus the r.h.s. of (6.7) equals∑

w∈W (M,M ′)

(EisQ− ◦R−1
P :Q−,w′−1)(ϕ).

Note that Q depends only on w′Mw′−1 and not on M ′. Summing over all standard parabolics
P ′, we get the formula

(6.8) (L ◦ EisP )(ϕ) =
∑
w′∈W

 ∑
M ′
∣∣∣∣M ′∩B−⊂w′Bw′−1

w′Mw′−1⊂M ′

(−1)dimZ(M ′)

 (EisQ− ◦R−1
P :Q−,w′−1)(ϕ).

Fixing w′ ∈W , let us classify all M ′ such that M ′ ∩B− ⊂ w′Bw′−1 and w′Mw′−1 ⊂M ′. The
two conditions above are equivalent to requiring ∆̌M ′ ⊂ w′Φ̌−G and ∆̌G ∩ w′Φ̌M ⊂ ∆̌M ′ . Thus
the inner sum in (6.8) equals

(1 + (−1))|∆̌G∩w′(Φ̌−G−Φ̌M )|,

which vanishes unless w′(Φ̌−G− Φ̌M ) contains no simple roots. If w′ /∈WM , then B 6⊂ w′Pw′−1,

so w′(Φ̌+
G∪ Φ̌M ) does not contain all the simple roots, i.e., w′(Φ̌−G− Φ̌M ) contains a simple root.

Therefore in order for the sum to not vanish, w′ must be in WM and M ∩ B− ⊂ w′Bw′−1.
Hence w′ = wM0 , and we have M ′ = M, Q = P . Since RP :P−,wM0

= RP :P− by M(F )-invariance,

we get (L ◦ EisP )(ϕ) = (−1)dimZ(M)(EisP− ◦R−1
P :P−)(ϕ). �

For a standard parabolic P , define the “second Eisenstein” operator Eis′P : CP,− → A by

Eis′P := EisP− ◦R−1
P :P− .
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Let AM denote the space of smooth K-finite functions on M(A)/M(F ). Let LM : AMc → AM

denote the operator L with respect to the reductive group M . Applying ind
G(A)
P (A), we also let

LM denote the induced operator CP,c → CP . Recall that LM is (−1)dimZ(M) times the identity
on M -cuspidal functions in CP,c.

Corollary 6.5.3. One has the equality

(6.9) L ◦ EisP = Eis′P ◦LM : CP,c → A.

The operator L is self-adjoint with respect to Bnaive, so (6.9) gives

(6.10) CTP ◦L = LM ◦ CT′P : Ac → CP ,

where CT′P : Ac → CP,+ is defined by CT′P = R−1
P−:P ◦ CTP− .

Remark 6.5.4. As explained in [22, §A.11.7], equation (6.9) is an analog of the “strange” func-
tional equation for geometric Eisenstein series stated in [24, Theorem 4.1.2].

Remark 6.5.5. Observe that for any f ∈ Ac, we have degQ
G(supp f) = degQ

G(suppLf) ⊂ ΛQ
G,G

from the definitions (i.e., L does not change the connected component of the image of the
support in BunG). As a consequence, for any ϕ ∈ CP on which LMϕ converges, we have

degQ
P (suppϕ) = degQ

P (suppLMϕ).

6.6. The space Aps-c of “pseudo-compactly” supported functions. We are inspired by
Lemma 6.1.1 to make the following definition.

Definition 6.6.1. Let Aps-c be the space of all functions f ∈ A such that CTP (f) ∈ CP,+ for
all standard parabolic subgroups P ⊂ G.

Proposition 6.6.2. For any f ∈ Ac, one has Lf ∈ Aps-c.

Proof. Let P = MU be a standard parabolic subgroup of G. By (6.10), we have CTP (Lf) =
LM (CT′P (f)) and CT′P (f) ∈ CP,+. Remark 6.5.5 implies that LM (CT′P (f)) ∈ CP,+ as well.
Hence CTP (Lf) ∈ CP,+ and Lf ∈ Aps-c. �

Theorem 6.6.3. The operator L : Ac → Aps-c is invertible. For f ∈ Aps-c one has

(6.11) L−1f =
∑
P

(−1)dimZ(M)(EisP ◦CTP )(f).

where the sum ranges over standard parabolic subgroups.

Proof. For f ∈ Aps-c, set L′f equal to the r.h.s. of (6.11). First we need to check that L′f ∈ Ac.
Let P ′ be another standard parabolic. Then by (6.5),

(CTP ′ ◦EisP ◦CTP )(f) =
∑

w∈W•
M,M′

(EisM
′

wM1w−1 ◦RGM1,w ◦ CTGM1
)(f)

where W •M,M ′ = {w ∈W | wα̌ > 0, ∀α̌ ∈ Φ̌+
M , w

−1α̌ > 0, ∀α̌ ∈ Φ̌+
M ′} is a set of representatives

for WM ′\W/WM , and M1 = M ∩ w−1M ′w. Summing over P , we have

CTP ′(L
′f) =

∑
w∈W

∑
M1|wM1w−1⊂M ′

 ∑
M

∣∣∣∣M1=M∩w−1M ′w
w∈W•

M,M′

(−1)dimZ(M)

 (EisM
′

wM1w−1 ◦RGM1,w ◦ CTGM1
)(f).
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Note that ∆̌M1
is any subset of w−1Φ̌+

M ′ ∩ ∆̌G, while ∆̌M − ∆̌M1
is any subset of w−1(Φ̌+

G −
Φ̌+
M ′) ∩ ∆̌G. Thus the inner sum over M vanishes unless w−1(Φ̌+

G − Φ̌+
M ′) contains no simple

roots. This only occurs if w = wM
′

0 w0 and M1 = M . By considering M ′1 = wM
′

0 w0M1w0w
M ′

0

instead of M1, we see that

(6.12) CTP ′(L
′f) =

∑
M ′1⊂M ′

(−1)dimZ(M ′1)(EisM
′

M ′1
◦RP ′1:(M ′∩P ′1)U ′− ◦ CT(M ′∩P ′1)U ′−)(f)

where the sum is over all Levi subgroups of M ′, and P ′1 is the standard parabolic subgroup

of G with Levi M ′1. Let Q = (M ′ ∩ P ′1)U ′−. Then w0w
M ′

0 QwM
′

0 w0 is a standard parabolic

subgroup. Since f ∈ Aps-c, we have CTQ(f) ∈ CQ,+. Observe that EisM
′

M ′1
◦RP ′1:Q = RP ′:P ′− ◦

EisM
′

M ′1
when either side converges absolutely. Also note that degQ

P ′(supp EisM
′

M ′1
(CTQ f)) =

degQ
P ′(supp(CTQ f)). From this we deduce that (EisM

′

M ′1
◦CTQ)(f) ∈ CP ′−,+. Therefore

(RP ′:P ′− ◦ EisM
′

M ′1
◦CTQ)(f) ∈ CP ′,−.

Consequently, CTP ′(L
′f) ∈ CP ′,− and L′ defines an operator Aps-c → Ac.

Now we check that L′ is inverse to L. For f ∈ Aps-c, it follows from (6.12) and the ensuing
discussion that

LL′f =
∑
P ′

∑
P ′1⊂P ′

(−1)dimZ(M ′)−dimZ(M ′1)(EisP ′− ◦R−1
P ′:P ′−◦RP ′:P ′−◦EisM

′

M ′1
◦CT(M ′∩P ′1)U ′−)(f).

Observe that EisP ′− ◦EisM
′

M ′1
= Eis(M ′∩P ′1)U ′− . Set M ′2 := wM

′

0 M ′1w
M ′

0 and let P ′2 be the corre-

sponding standard parabolic subgroup. Then Eis(M ′∩P ′1)U ′− ◦CT(M ′∩P ′1)U ′− = EisP ′−2
◦CTP ′−2

.

Hence

LL′f =
∑
P ′2

 ∑
P ′2⊂P ′

(−1)dimZ(M ′)−dimZ(M ′2)

 (EisP ′−2
◦CTP ′−2

)(f).

The inner sum vanishes unless P ′2 = G. Therefore LL′f = f .
For f ∈ Ac, we apply (6.10) to get

L′Lf =
∑
P

∑
M1⊂M

(−1)dimZ(M)−dimZ(M1)(Eis(M∩P−1 )U ◦CT′M
M∩P−1

◦CT′P )(f),

where P = MU ranges over the standard parabolic subgroups, M1 ranges over Levi sub-
groups of M , and P1 ⊂ G is the standard parabolic subgroup with Levi M1. Observe that
CT′M

M∩P−1
◦CT′P = CT′

(M∩P−1 )U
. Conjugating by wM0 , one sees that

Eis(M∩P−1 )U ◦CT′
(M∩P−1 )U

= EisP2
◦CT′P2

,

where P2 is the standard parabolic subgroup with Levi M2 := wM0 M1w
M
0 . Then

L′Lf =
∑
P2

( ∑
P2⊂P

(−1)dimZ(M)−dimZ(M2)

)
(EisP2 ◦CT′P2

)(f),

and the inner sum vanishes unless P2 = G. Therefore L′Lf = f , and we have proved that L′ is
the inverse of L. �
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Remark 6.6.4. We observe that formula (6.11) for L−1 may be thought of as an analog of the
Aubert–Zelevinsky involution for smooth representatives of a p-adic group: Let Fv denote a
non-Archimedean local field. For every smooth G(Fv)-module M one can form a complex

0→M →
⊕
P

iGP r
G
P (M)→ · · · → iGBr

G
B(M)→ 0

where iGP , r
G
P denote, respectively, the parabolic induction and Jacquet functors, and the sum

in the i-th term runs over standard parabolic subgroups of corank i in G. We call this complex
the Deligne–Lusztig complex associated to M and denote it by DL(M). Analogous complexes
were considered in [17] for representations of a finite Chevalley group. In the Grothendieck
group, we have

[DL(M)] =
∑
P

(−1)dimZ(G)−dimZ(M)[iGP r
G
P (M)]

where the sum ranges over standard parabolic subgroups. In fact, this defines an involution of
the Grothendieck group, which is often called the Aubert–Zelevinsky involution. If one considers
EisP ,CTP as global analogs of iGP , r

G
P , respectively, then formula (6.11) suggests that L−1 is a

global analog of the Aubert–Zelevinsky involution (although L−1 is no longer an involution).

Remark 6.6.5. The main result of [24] (namely, Theorem 0.1.6) says that the stack BunG is
miraculous, i.e., the functor Ps-IdBunG,! : D-mod(BunG)co → D-mod(BunG) is an equivalence.
This equivalence is a D-module analog of the part of Theorem 6.6.3 that says that the operator
LK : AKc → AK induces an isomorphism AKc → AKps-c.

The formula (6.11) for L−1 may be useful in describing the functor inverse to Ps-IdBunG,! (we
expect that one can mimic the construction of the Deligne–Lusztig complex using the functors
Eisenh

P ,CTenh
P defined in [25, §6]). We refer the reader to [22, Conjecture C.2.1] for an explicit

conjecture in the case G = SL(2).

Appendix A. Substacks of the Hecke stack

To keep the notation consistent throughout this paper, in this section M denotes an arbitrary
connected split reductive group over a perfect field k.

We will attach to any algebraic normal irreducible monoid M̃ with group of units M a
substack of a symmetrized version of the Hecke stack. This substack is the global model for
the formal arc space of the embedding M ↪→ M̃ , and it was also considered in [9, §2]. We are
particularly interested in the case when M is the Levi factor of a parabolic subgroup of G and
M̃ = M is the closure of the M -orbit of the coset U in G/U . The monoid M is studied in detail
in [51].

We recall the relation between the Hecke stack and the Beilinson–Drinfeld Grassmannian.
We use a symmetrized factorizable version of the affine Grassmannian. A detailed exposition
on the factorizable version of the affine Grassmannian over the Ran space can be found in [53].

A.1. Recollections on normal reductive monoids. Let M̃ be an algebraic normal irre-
ducible monoid with group of units M .

A.1.1. Fix a maximal torus T ⊂ M . The Renner cone Č ⊂ Λ̌Q of M̃ is the rational convex
cone corresponding by [32] to the closure of T in M̃ after base changing to an algebraic closure
of k. This cone is stable under the actions of WM and Gal(k̄/k). The Renner cone is canonical
and only depends on the abstract Cartan of M (which identifies with T after choosing a Borel
subgroup). L. Renner showed in [41, Theorem 5.4] that algebraic normal irreducible monoids
with group of unitsM bijectively correspond (via the Renner cone) to convex rational polyhedral
cones generating Λ̌Q as a vector space and stable under the actions of WM and Gal(k̄/k).
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A.1.2. Since M is scheme-theoretically dense in M̃ , the restriction functor

Rep(M̃)→ Rep(M)

is fully faithful, so we may consider Rep(M̃) as a full subcategory of Rep(M).

A.1.3. We will consider the algebraic stack M\M̃/M which sends a test scheme S to the
groupoid of pairs of M -bundles F1

M ,F
2
M on S equipped with a section

βM : S → M̃
M ×M
× (F1

M ×
S
F2
M ).

Such a section βM will be called an M̃ -morphism from F2
M to F1

M . By the Tannakian formalism,

giving an M̃ -morphism βM is the same as giving a collection of assignments

V ∈ Rep(M̃) βVM : VF2
M
→ VF1

M

where βVM is OS-linear, and the Plücker relations hold. This means that for V being the trivial
representation, βVM is the identity map OS → OS , and for an M -morphism V1⊗V2 → V3, the
diagram

(V1⊗V2)F2
M

β
V1
M ⊗ β

V2
M //

��

(V1⊗V2)F1
M

��

(V3)F2
M

β
V3
M // (V3)F1

M

commutes. Observe that the Plücker relations imply that the assignments βVM are functorial in
V .

A.1.4. Observe that the fiber bundle M ×M ×M (F1
M ×S F2

M ) canonically identifies with the
scheme of isomorphisms Isom(F2

M ,F
1
M ) over S. In other words, an M -morphism is an iso-

morphism of M -bundles. Therefore the stack M\M̃/M contains the open substack M\M/M ,
which canonically identifies with the classifying stack BM = M\pt of M .

A.2. Definition of H̃M . Let X be a smooth projective geometrically connected curve over a
field k. We consider the mapping stack Maps(X,M\M̃/M) whose value on a test scheme S is

the groupoid of all maps X ×S → M\M̃/M . Such a map is said to be non-degenerate if the

preimage of M\M/M ⊂M\M̃/M is a subset of X ×S whose projection on S is surjective. We
will denote

H̃M := Maps◦(X,M\M̃/M) ⊂ Maps(X,M\M̃/M)

the open substack consisting of non-degenerate maps. A map X ×S →M\M̃/M is the datum

of a pair of M -bundles F1
M ,F

2
M on X ×S and an M̃ -morphism βM : F2

M → F1
M between them.

In the Tannakian language, βM is non-degenerate if and only if for every geometric point s→ S,
the restriction of βVM to the fiber X × s is generically an isomorphism. The last condition is
equivalent to requiring that βVM is an embedding of coherent sheaves such that the quotient is
S-flat.
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A.2.1. Relation to the full Hecke stack. The projection M → M/[M,M ] induces an inclusion

Λ̌M/[M,M ] ⊂ Λ̌. Recall that Č denotes the Renner cone of M̃ , which is a WM -stable convex

polyhedral cone that generates Λ̌Q as a group. If M/[M,M ] is not finite (i.e., M is not semisim-

ple), then there exists a character λ̌ ∈ Λ̌ that lies in the interior of the cone Č ∩ Λ̌Q
M/[M,M ]. If

M is semisimple, we put λ̌ = 0 (in this case M̃ must equal M).

Considering λ̌ as a homomorphism M̃ → A1, the open subscheme λ̌−1(Gm) coincides with

M ⊂ M̃ . The closed subscheme λ̌−1(0) has the same reduced scheme structure as (M̃ −M)red.

Let Div+ denote the scheme of relative effective divisors of X. The map λ̌ : M̃ → A1 induces
a map

(A.1) H̃M → Div+ .

More explicitly, an S-point X ×S →M\M̃/M is sent to the preimage of M\λ̌−1(0)/M , which
is a relative effective divisor of X ×S.

A.2.2. Define the stack Hecke(M)Div+
as follows: its S-points are quadruples (D,F1

M ,F
2
M , βM )

where D is a relative effective divisor on X ×S, F1
M and F2

M are two M -bundles on X ×S, and
βM is an isomorphism of M -bundles on the restrictions

F2
M |X ×S−D ∼= F1

M |X ×S−D.
From this definition it is evident that we have a closed embedding of stacks

H̃M ↪→ Hecke(M)Div+ .

Remark A.2.3. The above inclusion slightly depends on the choice of λ̌, which is used to define
(A.1). This choice goes away if we consider Ran versions of the corresponding Hecke stacks,
since a point of Hecke(M)Div+

only depends on the reduced structure Dred of the divisor D.

A.2.4. We let
←
h,
→
h denote the two forgetful maps H̃M → BunM . We use the convention where

←
h is the map corresponding to F1

M .

Proposition A.2.5. The morphism H̃M → BunM ×BunM is schematic, quasi-affine, and of
finite presentation.

Proof. Consider a test scheme S and a map S → BunM ×BunM corresponding to M -bundles
F1
M ,F

2
M on X ×S. Then the fiber product H̃M ×

BunM ×BunM
S is isomorphic to an open subspace

of the space of sections of the map

M̃
M ×M
× (F1

M ×
X ×S

F2
M )→ X ×S.

This map is affine and of finite presentation because M̃ is, which implies that the space of
sections is representable by a scheme affine and of finite presentation over S. �

A.2.6. The monoid structure on M̃ allows us to compose two M̃ -morphisms F2
M → F1

M and

F3
M → F2

M to get an M̃ -morphism F3
M → F1

M . The composition of two non-degenerate mor-
phisms is non-degenerate. This defines a map

comp : H̃M ×
→
h ,BunM ,

←
h

H̃M → H̃M .

Remark A.2.7. The map (A.1) takes the composition of M̃ -morphisms into the sum of effective
divisors (which is a proper map Div+×Div+ → Div+). Hence Proposition A.3.3 below implies
that comp is a proper map.
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Lemma A.2.8. Let FM ∈ BunM (S) for a k-scheme S. Any non-degenerate M̃ -morphism
βM : FM → FM is an M -bundle automorphism.

Proof. Let V ∈ Rep(M̃). Then βVM : VFM → VFM is generically an isomorphism on geometric
fibers of X ×S. The same is true for det(βVM ), and Γ(X,OX) = k implies that βVM is an

isomorphism. Since M is the group of units of M̃ , we conclude that βM is an automorphism of
FM . �

Corollary A.2.9. Suppose there exist M̃ -morphisms βM : F2
M → F1

M and β′M : F1
M → F2

M .
Then βM , β

′
M are both isomorphisms.

A.3. Affine Grassmannians. In this section, we explain the relation between the Hecke stack
and the Beilinson–Drinfeld affine Grassmannian. We refer the reader to [53] for a far more
complete treatment of the affine Grassmannian.

For this purpose we introduce the divisor version of the jet group M(o). For D ∈ Div+(S),

let D̂ denote the formal completion of D in X ×S (which is a formal scheme). Define

M(o)Div+ = {(D, γ) | D ∈ Div+(S), γ ∈M(D̂)},
which is representable by a scheme affine over Div+ (cf. [53, Proposition 3.1.6]).

A.3.1. We define the symmetrized version of the Beilinson-Drinfeld affine Grassmannian as

GrM,Div+ := Spec(k) ×
F0
M ,BunM ,

←
h

Hecke(M)Div+

where F0
M ∈ BunM (k) is the trivial bundle.

A.3.2. The Hecke stack Hecke(M)Div+
can be regarded as a twisted product BunM ×̃GrM,Div+

.
More precisely, consider the stack

Y = {(D,F1
M , γ̃) | D ∈ Div+, F

1
M ∈ BunM , γ̃ : F0

M |D̂ ∼= F1
M |D̂}.

Then Y→ Div+×BunM is a M(o)Div+ -torsor. Observe that the group scheme M(o)Div+ also
acts on GrM,Div+

over Div+. We have a canonical isomorphism

Hecke(M)Div+
∼= Y

M(o)Div+

× GrM,Div+ ,

where on the right hand side we take the fiber product Y×Div+ GrM,Div+ and quotient by the
anti-diagonal action of M(o)Div+

.

Proposition A.3.3. The morphism H̃M → BunM ×Div+ is proper, where H̃M maps to BunM

by either
←
h or

→
h .

Proof. Without loss of generality we will consider the projection
←
h : H̃M → BunM . Let

G̃rM,Div+
:= Spec(k)×F0

M ,BunM H̃M , which is a closed subspace of GrM,Div+
. Choose a uni-

formizer $v ∈ ov at a place v. Let C ⊂ ΛQ denote the dual of the Renner cone of M̃ . Over

a divisor nv · v supported at a single point, the fiber of G̃rM,Div+
is equal to the union of the

orbits
M(ov) · θv($v) ⊂ (M(ov) ∩M(Fv))/M(ov)

for θv ∈ C∩Λ+
M satisfying 〈λ̌, θv〉 = nv, where λ̌ is the character chosen in §A.2.1. Since λ̌ lies in

the interior of Č∩ Λ̌Q
M/[M,M ], there are only finitely many θv such that 〈λ̌, θv〉 = nv. We deduce,

by factorization, that G̃rM,Div+ is representable by a scheme of finite type over Div+. It is known

that GrM,Div+
is ind-proper over Div+ (cf. [53, Remark 3.1.4]). Thus G̃rM,Div+

is proper over
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Div+. The Proposition follows by considering H̃M as a twisted product BunM ×̃G̃rM,Div+
as

explained in §A.3.2. �

A.4. Slope comparisons. Let π1(M) denote the quotient of Λ by the subgroup generated by
coroots of M . It is well-known that there is a bijection degM : π0(BunM ) ' π1(M). Note that

π1(M)⊗Q = ΛQ
M/[M,M ] = ΛQ

Z0(M). We call the composition

BunM → π1(M)→ ΛQ
Z0(M)

the slope map. Its fibers are not necessary connected but have finitely many connected compo-
nents. The slope map coincides with the composition

BunM → BunM/[M,M ] → π0(BunM/[M,M ]) = ΛM/[M,M ] ⊂ ΛQ
Z0(M).

Following the notation of [20, Theorem 7.4.3], let Bun
(λ)
M , λ ∈ Λ+,Q

M denote the quasi-compact
locally closed reduced substack of M -bundles with Harder-Narasimhan coweight λ. We refer
the reader to [20, §7] and [46] for statements and proofs of the main results of reduction theory
for a general reductive group.

Lemma A.4.1. Suppose F1
M ∈ Bun

(λ1)
M (k), F2

M ∈ Bun
(λ2)
M (k) for λ1, λ2 ∈ Λ+,Q

M , and there
exists an isomorphism βM : F2

M |X−D → F1
M |X−D for a divisor D ⊂ X. At each closed point

v ∈ D, the restriction of βM to Fv determines a coweight λv ∈ Λ+
M = KM,v\M(Fv)/KM,v.

Then

(A.2) wM0
∑
v

nv · λv ≤Q
M λ1 − λ2 ≤Q

M

∑
v

nv · λv,

where nv = dimk(kv) is the dimension of the residue field of v.

Proof. Consider the Harder–Narasimhan flag of F1
M : this is a canonical reduction of F1

M to a Q-
bundle F1

Q, where Q ⊂M is the parabolic subgroup corresponding to the Harder–Narasimhan

coweight λ1. Recall that a reduction of F2
M to Q is the same as a section of the proper map

F2
M/Q := F2

M ×M M/Q→ X. The reduction F1
Q and the isomorphism βM determine a section

X −D → F2
M/Q. By properness, this extends to a reduction F2

Q of F2
M with an isomorphism

βQ : F2
Q|X−D → F1

Q|X−D

inducing βM . Let L denote the Levi quotient of Q, and let F1
L,F

2
L, βL denote the corresponding

induced objects. Then the restriction of βL to SpecFv for v ∈ D determines a coweight
νv ∈ Λ+

L via the quotient map Q → L. Since νv and λv are both induced by βQ, we see that
νv($v)UQ(Fv)∩KM,vλv($v)KM,v 6= ∅ where $v ∈ ov is a uniformizer. This implies that νv is
contained in the convex hull of WM · λv (cf. [14, p. 148]).

Let ν2 ∈ ΛQ
L/[L,L] be the slope of F2

L. Then λ1 − ν2 is equal to the image of
∑
v∈D nv · νv

under the projection ΛQ → ΛQ
L/[L,L] = ΛQ

Z0(L). In particular, λ1 − ν2 lies in the convex hull

of the WM -orbit of
∑
v∈D nv · νv, so λ1 − ν2 ≤Q

M

∑
nv · λv. By the comparison theorem [46,

Theorem 4.5.1], ν2 ≤Q
M λ2. We have shown the second inequality in (A.2). Switching F1

M ,F
2
M

and considering β−1
M proves the first inequality by symmetry. �

Corollary A.4.2. Suppose F1
M ∈ Bun

(λ1)
M (k),F2

M ∈ Bun
(λ2)
M (k) for λ1, λ2 ∈ Λ+,Q

M , and there

exists a non-degenerate M̃ -morphism βM : F2
M → F1

M . Let C ⊂ ΛQ be the dual of the Renner

cone of M̃ . Then λ1 − λ2 belongs to the rational convex cone generated by C and Λpos,Q
M .
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Proof. Since βM is non-degenerate, there exists a divisor D ⊂ X such that βM |X−D is an
isomorphism. For v ∈ D, the coweight λv defined in Lemma A.4.1 corresponds to an element
in KM,v\(M(Fv)∩ M̃(ov))/KM,v. By the classification of double orbits of M(Fv)∩ M̃(ov), the
latter set identifies with C ∩Λ+

M . Therefore the WM -stable cone C contains wM0
∑
nv ·λv. The

corollary follows from Lemma A.4.1. �

A.5. The stack H+
M . Let P be a standard parabolic subgroup of G with Levi factor M . We

recall that G/U is quasi-affine. Let G/U denote the affine closure. We embed M ↪→ G/U by

m 7→ mU and define M to be the closure of M in G/U . Then M is a monoid acting on G/U
(cf. [51]).

We now specialize the above discussion of Hecke stacks to the case M̃ = M . Let

(A.3) H+
M = Maps◦(X,M\M/M)

denote the stack studied above.

Remark A.5.1. By [51, Lemma 3.1.4], the dual of the Renner cone of M equals Λpos,Q
U . Therefore

if we are in the setting of Corollary A.4.2, the rational cone generated by Λpos,Q
U and Λpos,Q

M is

Λpos,Q
G , and the corollary implies that λ1 − λ2 ∈ Λpos,Q

G , i.e., λ2 ≤Q
G λ1.

The rational cone generated by Λpos,Q
U and −Λpos,Q

M is wM0 Λpos,Q
G , and Lemma A.4.1 also

implies that λ1 − λ2 ∈ wM0 Λpos,Q
G .

A.5.2. Remarks on G. We assume for the rest of this Appendix that G has a simply connected
derived group [G,G]. The reader may refer to [46, §7] for how to remove this hypothesis, and
the relevant geometry remains the same.

A.5.3. The graded Ran space. Let ΛG,P := π1(M) denote the quotient of Λ by the subgroup
generated by the coroots of M . We have a natural projection Λ→ ΛG,P . Let Λpos

G,P denote the
submonoid of ΛG,P generated by the image of the positive coroots of G.

Any θ ∈ Λpos
G,P can be uniquely written as a sum

∑
njαj for j ∈ ΓG − ΓM . Let Xθ denote∏

X(nj). Define Ran(X,Λpos
G,P ) to be the disjoint union of Xθ for θ ∈ Λpos

G,P . Here we are

using the notation of [23], but we include 0 ∈ Λpos
G,P with X0 = Spec(k). We can regard

Ran(X,Λpos
G,P ) as the scheme of Λpos

G,P -colored divisors on X, which is a Λpos
G,P -graded version

of the Ran space. The grading allows us to use the language of factorization algebras graded
by a monoid introduced in [23, §2], which is slightly simpler than the more general set-up of
factorization algebras from [6] (the difference is that we can replace the Ran space with genuine
schemes).

A.5.4. Let us review the construction of the map H+
M → Ran(X,Λpos

G,P ), following [47, §3.1.7].

Recall from [11] that the quotient G/[P, P ] is strongly quasi-affine, and let G/[P, P ] denote its

affine closure. Let M/[M,M ] denote the closure of M/[M,M ] in G/[P, P ] under the natural
embedding

M/[M,M ] = P/[P, P ] ↪→ G/[P, P ] ⊂ G/[P, P ].

The projection G/U → G/[P, P ] extends to a map of affine closures G/U → G/[P, P ], and

therefore the projection M → M/[M,M ] extends to a map M → M/[M,M ]. This induces a
map of stacks

(A.4) H+
M → Maps◦(X,M/[M,M ]/(M/[M,M ])).

Consider Λ̌M/[M,M ] as a sub-lattice of Λ̌M . Then one can check that k[M/[M,M ]] has a basis

consisting of the characters in the submonoid Λ̌+
G ∩ Λ̌M/[M,M ]. Since [G,G] is assumed to be
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simply connected, Λpos
G,P is the monoid dual to Λ̌+

G ∩ Λ̌M/[M,M ]. We deduce that the right hand

side of (A.4) is isomorphic to the scheme Ran(X,Λpos
G,P ). Thus (A.4) becomes a map of stacks

H+
M → Ran(X,Λpos

G,P ).

For θ ∈ Λpos
G,P , denote the preimage of the connected component Xθ ⊂ Ran(X,Λpos

G,P ) by H+
M,Xθ

.

Remark A.5.5. We defined the map (A.4) “group-theoretically” following [47, §3.1.7]. One can
also define this map using the Tannakian formalism, which is essentially done in [11, 10].

A.5.6. We use the character 2ρ̌P = 2ρ̌ − 2ρ̌M ∈ Λ̌M/[M,M ] to define the map (A.1), which is
then equal to the composition

H+
M → Ran(X,Λpos

G,P )→ Div+,

where the last map sends Xθ to the symmetric power X(2|θ|) ⊂ Div+ for |θ| := 〈ρ̌P , θ〉.
As in §A.3.2, we can express H+

Xθ
as a twisted product

(A.5) H+
M,Xθ

∼= BunM ×̃Gr+
M,Xθ

where Gr+
M,Xθ

:= Spec(k)×
F0
M ,BunM ,

←
h
H+
M,Xθ

, using the action of the jet group M(o)X(|θ|) .

We will always consider the twisted product with respect to the projection
←
h .

A.5.7. By a partition A of θ we mean a decomposition

θ =
∑

λ∈Λpos
G,P−0

nλ · λ, nλ ∈ Z+.

Let Pθ denote the set of all partitions of θ. For a partition A ∈ Pθ, let XA :=
∏
λX

(nλ). This
is a scheme of dimension |A| :=

∑
nλ. Note that there is a natural map XA → Xθ.

Let (XA)disj ⊂ XA denote the open subscheme with all diagonals removed. A k-point
xA ∈ (XA)disj is a formal sum

∑
v∈|X| θv ·v for θv ∈ Λpos

G,P , such that for each λ ∈ Λpos
G,P , we have

nλ =
∑
v|θv=λ deg(v). The composition (XA)disj ↪→ XA → Xθ is a locally closed embedding,

and the subschemes (XA)disj for A ∈ Pθ form a stratification of Xθ. Thus we can stratify
H+
M,Xθ

by the substacks

H
+,A
M := H+

M,Xθ
×
Xθ

(XA)disj.

This stack H
+,A
M is the same as the one defined in [10, §1.8].

The diagonal X → Xθ corresponds to the trivial partition θ = 1 · θ, and we denote by H
+,θ
M

(resp. Gr+,θ
M ) the stack H+

M,Xθ
×
Xθ
X (resp. the scheme Gr+

M,Xθ
×
Xθ
X).

A.5.8. Let A ∈ Pθ. The stack H
+,A
M is fibered over (XA)disj×BunM with respect to

←
h . Similar

to §A.3.2, one can express H
+,A
M as a twisted product

(A.6) H
+,A
M
∼= BunM ×̃Gr+,A

M ,

where Gr+,A
M := Gr+

M,Xθ
×Xθ (XA)disj. To define the twisted product one considers the action

of the jet group M(o)X(|A|) on Gr+,A
M over X(|A|). The embedding

(A.7) H
+,A
M ↪→ H+

M,Xθ

lies over the map of symmetric powers X(2|A|) → X(2|θ|). The latter map induces a map of jet
groups M(o)X(2|A|) → M(o)X(2|θ|) . Therefore (A.7) can be thought of as a twisted product of
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idBunM with the embedding Gr+,A
M ↪→ Gr+

M,Xθ
, which is equivariant with respect to the actions

of the corresponding jet groups.

A.5.9. Let xA ∈ (XA)disj(k) be a Λpos
G,P -colored divisor

∑
θv · v, and let F1

M be a k-point of

BunM . Then the fiber of H+,A
M over this k-point (xA,F1

M ) is isomorphic to∏
Gr+,θv

M,v

where Gr+,θv
M,v is the closed subscheme of the affine Grassmannian GrM,v defined in [10, §1.6].

In terms of loop and jet groups,

Gr+
M,v(k) = (M(ov) ∩M(Fv))/M(ov) ⊂ GrM,v(k) = M(Fv)/M(ov).

A.6. Convolution products. Consider the diagram

(A.8) H+
M H+

M ×
→
h ,BunM ,

←
h

H+
M

comp
oo

(pr1,pr2)
// H+

M ×H+
M

and recall (Remark A.2.7) that the left arrow comp is proper. Using (A.5), one sees that comp
is isomorphic to the twisted product of idBunM with the proper map

(A.9) conv : Gr+
M,Xθ1

×̃Gr+
M,Xθ2

→ Gr+
M,Xθ

,

where θ = θ1 + θ2 and the left hand side is the convolution Grassmannian (cf. [53, (3.1.21)]).

A.6.1. We give D(H+
M ) the structure of a monoidal category by the convolution product

F̃1, F̃2 7→ F̃1 ? F̃2 := comp!((pr1,pr2)∗(F̃1� F̃2)) = comp!(pr∗1(F̃1)⊗pr∗2(F̃2)),

where pr1,pr2 : H+
M ×BunM H+

M → H+
M are the projection maps.

Let Sph+
M,Xθ = D(Gr+

M,Xθ
)M(o)

X(|θ|) . Define a product

? : Sph+
M,Xθ1

⊗Sph+
M,Xθ2

→ Sph+
M,Xθ ,

by F1 ? F2 := conv!(F1 �̃F2), which is a symmetrized version of the “external convolution
product” (cf. [53, §5.4]) for θ = θ1 + θ2.

For F1 ∈ Sph+
M,Xθ1

, F2 ∈ Sph+
M,Xθ2

, we can form the sheaves (Q`)BunM �̃Fi ∈ D(H+
M,Xθi

)

using (A.5). By construction, there is a canonical isomorphism

(Q` �̃F1) ? (Q` �̃F2) ∼= Q` �̃(F1 ? F2),

We remark that ? commutes with Verdier duality on Sph+
M,Xθ .

The category

Sph+
M := {θ 7→ Fθ ∈ Sph+

M,Xθ}

has a natural monoidal structure with respect to ?: for two families {Fθ1} and {Fθ2} the value
of their product in Sph+

M,Xθ is ⊕
θ=θ1+θ2

Fθ11 ? Fθ22 .



ON AN INVARIANT BILINEAR FORM VIA ASYMPTOTICS 39

A.6.2. Factorization property. For θ = θ1 + θ2, let (Xθ1 ×Xθ2)disj denote the the open locus
of Xθ1 ×Xθ2 consisting of pairs of colored divisors with disjoint supports. We have a natural
étale map (Xθ1 ×Xθ2)disj → Xθ.

The schemes Gr+
M,Xθ

, θ ∈ Λpos
G,P factorize in the sense that there exist Cartesian diagrams

(Gr+
M,Xθ1

×Gr+
M,Xθ2

) ×
Xθ1 ×Xθ2

(Xθ1 ×Xθ2)disj
//

��

Gr+
M,Xθ

��

(Xθ1 ×Xθ2)disj
// Xθ

for θ = θ1 + θ2.

A.6.3. The internal convolution (i.e., fusion) product (cf. [53, (5.4.4)])

~ : D(Gr+,θ1
M )M(o)X ⊗D(Gr+,θ2

M )M(o)X → D(Gr+,θ
M )M(o)X

for θ = θ1 + θ2 is related to the ? product as follows: Let ∆θ : Gr+,θ
M ↪→ Gr+

M,Xθ
denote the

closed embedding. Then there is a canonical isomorphism

(A.10) F1 ~ F2
∼= ∆θ∗(∆θ1

∗ (F1) ?∆θ2
∗ (F2)).

Appendix B. Factorization algebras in Sph+
M

In this section we review some of the objects introduced in [12, 23] and their properties.
For our purposes, we only need to work with these objects at a very coarse level (e.g., in the
Grothendieck group) so we omit much of the higher categorical nuances.

Let G be a connected split reductive group over a perfect field k. Let P be a standard
parabolic subgroup of G. While the results of loc. cit. are stated only in the case P = B, we
state them for arbitrary parabolics. The reader may check that the proofs readily generalize.

We will continue using the notation of Appendix A for the monoid M , the Hecke stack, the
affine Grassmannian, and the graded Ran space.

B.1. Remarks on G. For simplicity, we assume throughout this Appendix that G has a simply

connected derived group [G,G], so that we may use the same construction of B̃unP as in [11, 10].
The reader may refer to [46, §7] for how to remove this hypothesis, and the basic geometry of
the Zastava space and Drinfeld’s compactification remains the same.

B.2. Geometric Satake. For simplicity, we will only use the non-factorizable geometric Satake
functor. Let M̌ denote the Langlands dual group of M over the field Q`. Observe that each
θ ∈ Λpos

G,P defines a central character of M̌ . Let Rep(M̌)θ denote the subcategory of M̌ -modules

with central character θ. Then we have a t-exact (with respect to the perverse t-structures)
functor

Satnaive
X : D(Rep(M̌)θ)⊗D(X)→ D(Gr+,θ

M,X)M(o)X ,

which is a special case of the factorizable geometric Satake functor Satnaive
Ran(X) constructed in

[40, §6]. If we allow θ to range over all of Λpos
G,P , then Satnaive

X is monoidal with respect to
the usual tensor structure on the left hand side and the internal convolution product ~ on the
Beilinson-Drinfeld Grassmannian (cf. §A.6.3) on the right hand side.
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Remark B.2.1. Suppose k = Fq. Fix a closed point v ∈ |X| and let mv ∈ Gr+,θ
M,v(Fq). As

explained in [53, §5.6], the geometric Satake functor corresponds to the classical Satake iso-
morphism Sv : HM,v → K(Rep(M̌))⊗Q` by Grothendieck’s functions–sheaves dictionary: the

trace of the geometric Frobenius at the ∗-fiber at mv of Satnaive
X (V ⊗(Q`)X) equals

S−1
v ([V ])(mv),

where [V ] is the image of V in the Grothendieck group K(Rep(M̌)). Here HM,v is the spherical
Hecke algebra of M(Fv), and Sv is Langlands’ reformulation of the classical Satake isomorphism
(cf. §3.4).

B.3. Factorization algebras. We use the language of factorization algebras graded by the
monoid Λpos

G,P introduced in [23, §2]. This is simply a particular case of the general notion of

factorization algebra defined in [6].

B.3.1. A Λpos
G,P -graded factorization algebra F ∈ Sph+

M is a family of sheaves Fθ ∈ Sph+
M,Xθ

such that for θ = θ1 + θ2, we have an isomorphism

Fθ|(Xθ1 ×Xθ2 )disj
∼= (Fθ1 �Fθ2)|(Xθ1 ×Xθ2 )disj ,

of sheaves on Gr+
M,Xθ

×Xθ (Xθ1 ×Xθ2)disj satisfying the natural compatibilities. On the left

hand side, we are restricting along the étale map (Xθ1 ×Xθ2)disj → Xθ. On the right hand side,
we restrict along the open embedding (Xθ1 ×Xθ2)disj ↪→ Xθ1 ×Xθ2 and use the factorization

property of Gr+
M,Xθ

explained in §A.6.2.

B.3.2. Let F ∈ Sph+
M be a commutative algebra object in the monoidal category. For θ =

θ1 + θ2, the multiplication map Fθ1 ? Fθ2 → Fθ induces, by adjunction, a map

(Fθ1 �Fθ2)|(Xθ1 ×Xθ2 )disj → Fθ|(Xθ1 ×Xθ2 )disj .

We say that F is a commutative factorization algebra if these maps are isomorphisms for all
θ = θ1 + θ2.

B.3.3. Let F ∈ Sph+
M be a cocommutative coalgebra object in the monoidal category. For

θ = θ1 + θ2, the comultiplication map Fθ → Fθ1 ? Fθ2 induces, by adjunction, a map

Fθ|(Xθ1 ×Xθ2 )disj → (Fθ1 �Fθ2)|(Xθ1 ×Xθ2 )disj .

We say that F is a cocommutative factorization algebra if these maps are isomorphisms for all
θ = θ1 + θ2.

B.4. Cocommutative factorization algebras.

B.4.1. Let us recall the definition of the cocommutative factorization algebra Υ(ǔP ) ∈ Sph+
M

introduced in [12].

For θ ∈ Λpos
G,P , let ∆θ : Gr+,θ

M ↪→ Gr+
M,Xθ

denote the closed diagonal. The Λpos
G,P -graded

M̌ -module

ǔP =
⊕

α∈Φ+
G−Φ+

M

ǔα

gives a complex

ǔP,Sph+M
:=

⊕
α∈Φ+−Φ+

M

∆α
∗ (Satnaive

X (ǔα⊗(Q`)X)) ∈ Sph+
M .
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The Lie algebra structure on ǔP gives a Lie algebra structure to ǔP,Sph+M
with respect to the ?

monoidal structure on Sph+
M . Then

Υ(ǔP ) := C•(ǔP,Sph+M
)

is the homological Chevalley complex associated to this Lie algebra, and Υ(ǔP ) is a cocommu-
tative factorization algebra.

B.4.2. Let U(ǔP )Sph+M
denote the universal enveloping algebra of the Lie algebra ǔP,Sph+M

.

This is a cocommutative factorization algebra in Sph+
M with a compatible associative algebra

structure with respect to ?.

Remark B.4.3. If we consider ǔP,Sph+M
[1] as a Lie superalgebra in degree −1, then

Υ(ǔP ) = U(ǔP,Sph+M
[1]).

B.4.4. Restriction to strata. For θ ∈ Λpos
G,P and A ∈ Pθ a partition, let xA ∈ (XA)disj(k) be a

Λpos
G,P -colored divisor

∑
θv · v. Then the fiber of Gr+,A

M → (XA)disj over xA is isomorphic to∏
Gr+,θv

M,v by the factorization property.

Since Υ(ǔP ) is a factorization algebra and Satnaive
X is a monoidal functor, (A.10) implies that

the ∗-restriction of Υ(ǔP ) to this fiber of Gr+,A
M canonically identifies with

�
v

Satnaive
v (C•(ǔP )θv )

where C•(ǔP )θv denotes the θv-graded piece of the Chevalley complex of the Lie algebra ǔP in

D(Rep(M̌)), and Satnaive
v is the non-relative geometric Satake functor for Gr+,θv

M,v .

The ∗-restriction of U(ǔP )Sph+M
to the fiber

∏
Gr+,θv

M,v canonically identifies with

�
v

Satnaive
v (U(ǔP )θv )

where U(ǔP )θv is the θv-graded piece of the universal enveloping algebra of ǔP in D(Rep(M̌)).

B.4.5. Koszul resolution. Let 1 denote the constant sheaf Q` on Spec(k) = Gr+
M,X0 . Then 1 is

the unit in the monoidal category Sph+
M .

Consider the acyclic complex ǔP,Sph+M
→ ǔP,Sph+M

as a Lie superalgebra in degrees −1, 0. The

universal enveloping algebra of this Lie superalgebra is quasi-isomorphic to 1. This resolution
endows 1 with the structure of a comodule with respect to Υ(ǔP ) and of a module with respect
to U(ǔP )Sph+M

.

B.5. Commutative factorization algebras.

B.5.1. We define the commutative factorization algebra Ω(ǔ−P ) ∈ Sph+
M as the Verdier dual of

Υ(ǔ−P ). (Here we use the opposite Lie algebra ǔ−P so that Ω(ǔ−P ) is still Λpos
G,P -graded.)

One can also define Ω(ǔ−P ) from scratch by considering

(ǔ−
P,Sph+M

)∨ := D(ǔ−
P,Sph+M

) ∼=
⊕

α∈Φ+
G−Φ+

M

∆α
∗ (Satnaive

X (ǔ∨−α⊗(Q`)X(1)[2])).

Then (ǔ−
P,Sph+M

)∨ is a Lie coalgebra in Sph+
M with respect to the ? monoidal structure. There is

a canonical isomorphism

Ω(ǔP ) ∼= C•((ǔ−
P,Sph+M

)∨),
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where the right hand side is the cohomological Chevalley complex associated to this Lie coal-
gebra.

B.5.2. Let U∨(ǔ−P )Sph+M
denote the universal co-enveloping coalgebra of (ǔ−

P,Sph+M
)∨. This is a

commutative factorization algebra in Sph+
M with a compatible coalgebra structure with respect

to ?.

B.5.3. Restriction to strata. For θ ∈ Λpos
G,P and A ∈ Pθ a partition, let xA ∈ (XA)disj(k) be a

Λpos
G,P -colored divisor

∑
θv · v. Then the fiber of Gr+,A

M → (XA)disj over xA is isomorphic to∏
Gr+,θv

M,v .

Since Ω(ǔ−P ) is a factorization algebra and Satnaive
X is a monoidal functor, the ∗-restriction of

Ω(ǔ−P ) to this fiber of Gr+,A
M canonically identifies with

�
v

Satnaive
v (C•((ǔ−P )∨(1)[2])θv )

where C•((ǔ−P )∨(1)[2])θv denotes the θv-graded piece of the cohomological Chevalley complex,

and Satnaive
v is the non-relative geometric Satake functor for Gr+,θv

M,v .

The ∗-restriction of U∨(ǔ−P )Sph+M
to the fiber

∏
Gr+,θv

M,v canonically identifies with

�
v

Satnaive
v (U((ǔ−P )∨(1)[2])θv )

where U((ǔ−P )∨(1)[2])θv is the θv-graded piece of the universal co-enveloping coalgebra.

B.5.4. Koszul resolution. Applying Verdier duality to the Koszul resolution in §B.4.5 gives
1 ∈ Sph+

M the structure of a module with respect to Ω(ǔ−P ) and of a comodule with respect to
U∨(ǔP )Sph+M

.

B.6. Eisenstein series. Let

 : BunP ↪→ B̃unP

denote the open embedding into Drinfeld’s compactification of BunP .

B.6.1. Action on Drinfeld’s compactifications. For every θ ∈ Λpos
G,P there corresponds a proper

map

ῑθ : B̃unP ×
BunM

H+
M,Xθ

→ B̃unP .

Using (A.5), we can express B̃unP ×BunM H+
M,Xθ

as a twisted product B̃unP ×̃Gr+
M,Xθ

. Given

E ∈ D(B̃unP ) and F ∈ Sph+
M,Xθ , we can form a sheaf E �̃F ∈ D(B̃unP ×BunM H+

M,Xθ
). We

define an action of Sph+
M,Xθ on D(B̃unP ) by

E,F 7→ E ? F := ῑθ∗(E �̃F),

which is compatible with the monoidal product ? on Sph+
M .
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B.6.2. It was established in [12, Theorem 4.2] (cf. [23, Theorem 5.2.2]) that there exists a map

∗(ICBunP )→ ∗(ICBunP ) ?Υ(ǔP )

that gives ∗(ICBunP ) the structure of an Υ(ǔP )-comodule.
By [12, Theorem 6.6] (cf. [23, Theorem 5.2.4]), we have a quasi-isomorphism

(B.1) ∗(ICBunP ) �
Υ(ǔP )

1→ IC
B̃unP

where � denotes the homotopy cotensor product over Υ(ǔP ) (i.e., the coBar construction),
which can be computed using the Koszul resolution of 1 from §B.5.4.

Recall that 1 is also a U(ǔP )-module. Thus applying the homotopy tensor product over
U(ǔP ) to (B.1), we get a quasi-isomorphism

(B.2) ∗(ICBunP ) ∼= ∗(ICBunP ) �
Υ(ǔP )

1 ⊗
U(ǔP )

1 ∼= IC
B̃unP

⊗
U(ǔP )

1,

where the first quasi-isomorphism follows from the Koszul duality Υ(ǔP ) ∼= 1⊗U(ǔP ) 1.

B.7. The factorization algebra Υ̃(ǔP ).

B.7.1. Let ιθ denote the composition

ῑθ ◦ (× idH+

M,Xθ
) : BunP ×

BunM
H+
M,Xθ

→ B̃unP .

The maps ιθ are locally closed embeddings and their images define a stratification of B̃unP
(cf. [11, §6.2], [10]).

B.7.2. Following [23, Proposition 6.1.3], there exists a canonically defined factorization algebra

Υ̃(ǔP ) equipped with the structure of a coassociative coalgebra in Sph+
M such that

ιθ∗(∗(ICBunP )) ∼= ICBunP �̃ Υ̃(ǔP )θ.

B.7.3. We now describe the image of Υ̃(ǔP ) in the Grothendieck group of Sph+
M . Taking the

image of (B.2) in the Grothendieck group gives the equality [∗(ICBunP )] = [IC
B̃unP

?Υ(ǔP )]. For

µ ∈ ΛG,P , let BunµM denote the corresponding connected component consisting of M -bundles
of degree µ. Let BunµP := BunP ×BunM BunµM . We have a Cartesian square

BunµP ×
BunM

H+
M,Xθ1

×
BunM

H+
M,Xθ2

//

idBunP
× comp

��

B̃un
µ−θ1
P ×

BunM
H+
M,Xθ2

ῑθ2

��

BunµP ×
BunM

H+
M,Xθ

ιθ // B̃un
µ−θ
P

where θ = θ1 + θ2. Therefore pulling back by ιθ∗ gives

(B.3) [ιθ∗∗(ICBunP )] =
∑

θ1+θ2=θ

[ιθ1∗(IC
B̃unP

) ?Υ(ǔP )θ2 ]

in the Grothendieck group of BunP ×BunM H+
M,Xθ

. The following result is proved in [10, The-

orem 1.12] after passing to the Grothendieck group, and it is proved in the derived category in
[12, Proposition 4.4]:

Proposition B.7.4. There exists a canonical isomorphism in D(BunP ×BunM H
+,θ
M ):

ιθ∗(IC
B̃unP

) ∼= ICBunP �̃U
∨(ǔ−P )θ

Sph+M
.
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Combining (B.3) and Proposition B.7.4, we deduce that

(B.4) [Υ̃(ǔP )θ] =
∑

θ1+θ2=θ

[U∨(ǔ−P )θ1
Sph+M

?Υ(ǔP )θ2 ]

in the Grothendieck group of Sph+
M .

Proposition B.7.5. Suppose k = Fq. The trace of the geometric Frobenius on ∗-stalks of

Υ̃(ǔP )θ is equal to the function

(FM , βM ) ∈ Gr+
M,Xθ

(Fq) 7→ q−〈ρ̌P ,θ〉
∏
v

νM,v(mv),

where mv ∈ Gr+
M,v(Fq) ⊂ M(Fv)/M(ov) is determined by βM , and νM,v is the KM,v-bi-

invariant measure on M(Fv) defined in §3.3.4.

Proof. Let xA ∈ (XA)disj(Fq), A ∈ Pθ, denote the image of (FM , βM ) under Gr+
M,Xθ

→ Xθ.

Then the fiber of xA is isomorphic to
∏
v Gr+,θv

M,v , and the point (FM , βM ) corresponds to the

collection {mv ∈ Gr+,θv
M,v (Fq)}. Since Υ̃(ǔP ) is a factorization algebra, it suffices to consider

the case when βM is an isomorphism on X − v for a fixed closed point v, i.e., xA = θv · v is
supported at a single point v.

The trace of geometric Frobenius on ∗-stalks of a complex only depends on the image of
the complex in the Grothendieck group. Therefore (B.4), the discussion in §B.4.4 and §B.5.3,
and the compatibility of geometric Satake with the classical Satake transform (Remark B.2.1)
together imply that the trace of geometric Frobenius at the ∗-stalk of (FM , βM ) equals

S−1
v

((∑
n=0

(−1)n[∧nǔP ]

)
⊗

( ∞∑
n=0

[Symn ǔP ] · q−nv

))
(mv).

Comparing with (3.8), we deduce the proposition. �

B.8. Geometric proof. We prove Proposition B.7.5 above using (3.7), which is essentially
the classical Gindikin–Karpelevich formula. However, the Satake transform does not appear in
the statement of Proposition B.7.5. In this subsection we give a more direct proof of Proposi-
tion B.7.5 using derived algebraic geometry.

B.8.1. Zastava spaces. Let ZP,θ denote the Zastava space defined in [10] corresponding to the

parabolic P , and let
◦
ZP,θ denote the open Zastava space (called ZP,θmax in loc. cit.). We have a

map πZ : ZP,θ → Gr+
M,Xθ

. Let
◦
πZ :

◦
ZP,θ → Gr+

M,Xθ
denote the restriction.

B.8.2. Let Ω̃(ǔ−P ) denote the Verdier dual of Υ̃(ǔ−P ). Then Ω̃(ǔ−P ) is a factorization algebra on

Sph+
M with the defining equation

ιθ!(!(ICBunP )) ∼= ICBunP �̃ Ω̃(ǔ−P )θ

for θ ∈ Λpos
G,P . Using the local model of [10, §3] and the contraction principle ([10, Proposition

5.2]), one sees that there is a canonical isomorphism

(B.5) Ω̃(ǔ−P )θ ∼= (
◦
πZ)!(IC◦

ZP,θ
).

From this equation, factorization of Ω̃(ǔ−P ) follows from the factorization property of
◦
ZP,θ.
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Lemma B.8.3. Suppose k = Fq. The trace of geometric Frobenius on ∗-stalks of Ω̃(ǔ−P )θ is
equal to the function

(FM , βM ) ∈ Gr+
M,Xθ

(Fq) 7→ q−〈ρ̌P ,θ〉
∏
v

µM,v(mv),

where mv ∈ Gr+
M,v(Fq) ⊂ M(Fv)/M(ov) is determined by βM , and µM,v is the KM,v-bi-

invariant measure on M(Fv) defined in §3.1.1.

Proof. Let xA ∈ (XA)disj(Fq), A ∈ Pθ, denote the image of (FM , βM ) under Gr+
M,Xθ

→ Xθ.

Then the fiber of xA is isomorphic to
∏
v Gr+,θv

M,v , and the point (FM , βM ) corresponds to the

collection {mv ∈ Gr+,θv
M,v (Fq)}. Since Ω̃(ǔP ) is a factorization algebra, it suffices to consider the

case when βM is an isomorphism on X−v for a fixed closed point v, i.e., xA = θv ·v. Therefore
we can restrict our attention to the central fiber

◦
Zθv :=

◦
ZP,θ ×

Xθ
Spec(k)

where Spec(k) → Xθ is the point θv · v. Let GrθvP,v denote the preimage under GrP,v →
GrM/[M,M ],v of the point corresponding to θv. By [10, Proposition 2.6], there is a natural

identification
◦
Zθv
∼= GrθvP,v ∩GrU−,v such that

◦
πZ corresponds to the map

GrθvP,v ∩GrU−,v ↪→ GrP,v → GrM,v .

In other words, the central fiber of the open Zastava space is an intersection of semi-infinite
orbits in the affine Grassmannian. Recall from §3.1.1 that µM,v is defined as the measure
of certain semi-infinite orbits. By Grothendieck’s trace formula, we deduce that the trace of

geometric Frobenius on ∗-stalks of (
◦
πZ)!(Q`)◦

ZP,θ
equals the function mv 7→ µM,v(mv). Since

◦
ZP,θ is a smooth scheme of dimension 〈2ρ̌P , θ〉, we have proved the lemma. �

By [23, Proposition 6.2.2], we have a Koszul duality

1 ⊗
Ω̃(ǔ−P )

1 ∼= Υ̃(ǔP ).

At the level of Grothendieck groups, this tells us that we have an equality [Ω̃(ǔ−P )]?[Υ̃(ǔP )] = [1].

Therefore the Grothendieck function of Ω̃(ǔ−P ) is the convolution inverse of the Grothendieck

function of Υ̃(ǔP ). Since νM,v is defined to be the convolution inverse of µM,v, Lemma B.8.3
implies Proposition B.7.5.

Appendix C. The Drinfeld–Lafforgue–Vinberg compactification

Let k be a perfect base field. In this section we review the definition and properties of the
stack VinBunG introduced in [47]. In §C.6, we mention an alternate definition of VinBunG in
the general case when [G,G] is not simply connected. For k = Fq, we use results from loc. cit. to
compute the trace of the geometric Frobenius acting on the ∗-stalks of the ∗-pushforward of
the constant sheaf Q` under the diagonal morphism ∆ of BunG (see Theorem C.7.2). This is
done by using a certain compactification of ∆, which we construct in §C.8.
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C.1. The Deconcini–Procesi–Vinberg semigroup. Set Tadj := T/Z(G), where Z(G) is

the center of G. The simple roots identify Tadj with G|ΓG|m .

Let Genh denote the Vinberg semigroup of G, which admits a homomorphism

π̄ : Genh → Tadj

where Tadj := (A1)|ΓG|. Any representation of Genh decomposes into ones of the form V ⊗ kλ̌
where V ∈ Rep(G) and λ̌ ∈ Λ̌ is a weight of T , such that for all weights µ̌ of V , the difference
λ̌− µ̌ belongs to the root lattice. By definition, V ⊗ kλ̌ ∈ Rep(Genh) if and only if λ̌− µ̌ ∈ Λ̌pos

G

for all weights µ̌ of V .

C.1.1. We recall some facts whose proofs can be found in [50, §8] in the characteristic zero
case and in [43] in general. Let V (λ̌) denote the irreducible G-module of highest weight λ̌ ∈ Λ̌+

G.

Following [19, Lemma D.4.2, Definition D.4.3], we let
◦

Genh denote the non-degenerate locus
of Genh. By definition, this is the open subscheme of Genh whose k̄-points are the elements
g ∈ Genh(k̄) with nonzero action on V (λ̌)⊗ k̄λ̌ for all dominant weights λ̌ ∈ Λ̌+

G.

It is known that
◦

Genh is smooth over Tadj. The choice of Cartan subgroup T ⊂ G defines a
section s : Tadj → Genh by s(t) = (t−1, t), which extends to a homomorphism of monoids

s̄ : Tadj → Genh

with image contained in
◦

Genh (cf. [19, Lemma D.5.2]). The G×G-action on
◦

Genh gives an
equality ([19, Corollary D.5.4])

◦
Genh = G · s̄(Tadj) ·G.

C.1.2. For a standard parabolic P with Levi subgroup M , let cP ∈ Tadj be the point defined
by the condition that α̌i(cP ) = 1 for simple roots α̌i contained inside M , and α̌i(cP ) = 0 for
all other simple roots.

There is a canonical T -stable stratification of Tadj indexed by standard parabolics, with the

point cP contained in the stratum (Tadj)P corresponding to the parabolic P . In other words,

(Tadj)P = {t ∈ Tadj | α̌i(t) 6= 0, i ∈ ΓM and α̌j(t) = 0, j ∈ ΓG − ΓM}.

The T -action on cP induces an isomorphism T/Z(M) ∼= (Tadj)P . Define

(Tadj)≥P = {t ∈ Tadj | α̌i(t) 6= 0, i ∈ ΓM}

to be the open locus of Tadj obtained by removing all strata corresponding to parabolic sub-
groups not containing P .

Example C.1.3. Let G = SL(2). Then Genh = GL(2) and Genh = Mat(2), the monoid of 2× 2
matrices. In this case Tadj = Gm, Tadj = A1, and π̄ : Mat(2)→ A1 is the determinant map. The

non-degenerate locus
◦

Genh = Mat(2)−{0} is the open subset of nonzero matrices. Let B equal
the Borel of upper triangular matrices and identify T with the subgroup of diagonal matrices
in G. The section s̄ corresponding to (B, T ) is the map A1 → Mat(2) sending x 7→ ( 1 0

0 x ). The
idempotent cG equals 1 ∈ A1, and cB equals 0.
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C.1.4. Note that the projection Tadj = T/Z(G) → T/Z(M) = G|ΓM |m has a natural splitting

T/Z(M) ↪→ T/Z(G) corresponding to the inclusion G|ΓM |m ×{1} ↪→ G|ΓG|m . Set T/Z(M) :=
(A1)|ΓM |. We have a decomposition Tadj = (T/Z(M))×(Z(M)/Z(G)), which extends to a
decomposition

Tadj = T/Z(M)×Z(M)/Z(G),

where Z(M)/Z(G) ∼= (A1)|ΓG|−|ΓM | is the closure of Z(M)/Z(G) ⊂ Tadj in Tadj. Under the

above decomposition, the point (1, 0) corresponds to cP , the stratum (Tadj)P corresponds to

T/Z(M)×{0} = G|ΓM |m ×{0}, and (Tadj)≥P = T/Z(M)×Z(M)/Z(G) = G|ΓM |m ×(A1)|ΓG|−|ΓM |.

C.2. The stack VinBunG. Following [47], the stack

VinBunG ⊂ Maps(X,G\Genh/G)

is the open substack8 of maps generically landing in the non-degenerate locus
◦

Genh. For a test
scheme S, an S-point of VinBunG is a datum of (F1

G,F
2
G, β), where F1

G,F
2
G are G-bundles on

X ×S and

β : X ×S → Genh

G×G
× (F1

G ×
X ×S

F2
G)

is a section over X ×S that generically lands in
◦

Genh over every geometric point of S. We call
such a section β a Genh-morphism F2

G → F1
G.

The map π̄ induces a map

π̄Bun : VinBunG → Maps(X,Tadj) = Tadj,

where the last equality holds because X is proper and geometrically connected. Let VinBunG,P
(resp. VinBunG,≥P ) denote the preimage of (Tadj)P (resp. (Tadj)≥P ) under π̄Bun. Note that
VinBunG,≥P contains the open stratum VinBunG,G.

C.3. The Tadj-action on VinBunG. In what follows, we will define a canonical action of Tadj

on VinBunG which is equivariant with respect to π̄Bun and the identity action on Tadj.

C.3.1. Suppose we have an exact sequence of algebraic groups

1→ H ′ → H → H ′′ → 1

and an action of H on a k-scheme Y . Then the stack H ′\Y is an H ′′-torsor over the stack
H\Y : indeed, the morphism H ′\Y → H\Y is obtained by base change from the H ′′-torsor
H ′\ pt→ H\ pt, where pt = Spec(k).

In particular, H ′′ acts on H ′\Y over H\Y . One can think of this action as follows. An
S-point of H\Y is an H-torsor FH → S equipped with an H-equivariant morphism FH → Y .
Lifting these data to a morphism S → H ′\Y is the same as specifying an H ′-structure on FH ,
which is the same as specifying an H-equivariant morphism FH → H ′′. The set of all such
morphisms FH → H ′′ is equipped with an action of H ′′(S) (by right translations).

8The definition of VinBunG is deceptively similar to that of H̃M in §A.2. We note the differences: in the
definition of VinBunG, we consider the quotient stack by G×G and not Genh×Genh. More importantly, the

non-degenerate locus
◦

Genh is larger than the subgroup Genh.
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C.3.2. Applying the discussion above to Y = Genh and the exact sequence

1→ G×G→ Genh×Genh → Tadj×Tadj → 1

(so H = Genh×Genh, H ′ = G×G, and H ′′ = Tadj×Tadj), one gets a canonical action of

Tadj×Tadj on G\Genh/G. We will be considering only the action of Tadj = Tadj×{1} ⊂
Tadj×Tadj (which comes from the action of Genh on Genh by left translations).

C.3.3. The Tadj-action on G\Genh/G preserves G\
◦

Genh/G, so it induces a Tadj-action on

VinBunG ⊂ Maps(X,G\Genh/G).

This action can be described explicitly as follows. A G-bundle FG on X ×S is equivalent to a
Genh-bundle FGenh

on X ×S together with a trivialization of the induced Tadj-bundle π(FGenh
).

The group Tadj(S) acts on the space of such trivializations, so Tadj acts on VinBunG by leaving
the Genh-bundle F1

Genh
induced by F1

G fixed and changing the trivialization of π(F1
Genh

).

C.4. Fiber bundles. Fix a standard parabolic subgroup P , and consider the open locus
VinBunG,≥P lying over

(Tadj)≥P = T/Z(M)×Z(M)/Z(G).

Let VinBunG,≥P,strict = π̄−1
Bun({1}×Z(M)/Z(G)). Since we have the splitting T/Z(M) ↪→ Tadj

(see §C.1.4), the Tadj-action on VinBunG defined in §C.3 restricts to a T/Z(M)-action on
VinBunG,≥P . This action induces an isomorphism

(C.1) VinBunG,≥P ∼= VinBunG,≥P,strict×(T/Z(M)),

i.e., VinBunG,≥P is a trivial fiber bundle over the projection to T/Z(M).

Note that cP is the zero element in Z(M)/Z(G). Let (Genh)cP denote the fiber of π̄ over
cP . Then VinBunG,cP := π̄−1

Bun(cP ) is equal to the stack

Maps◦(X,G\(Genh)cP /G)

where the superscript ◦ denotes the open substack of maps generically landing in the non-
degenerate locus. Intersecting (C.1) with the P -locus gives

(C.2) VinBunG,P ∼= VinBunG,cP ×(T/Z(M)).

In the case P = G, the G-locus VinBunG,G is isomorphic to BunG×Tadj.

C.4.1. It is known (cf. [19, Appendix C]) that the G×G-action on s̄(cP ) ∈
◦

Genh induces an
isomorphism

XP := (G×G)/(P ×
M
P−) ∼= (

◦
Genh)cP .

We learned of the following lemma from [47, Lemma 2.1.11].

Lemma C.4.2. The variety (Genh)cP is isomorphic to XP .

Proof. By [43, Theorem 7], the irreducible affine variety (Genh)cP is normal. Since (Genh)cP

contains the non-degenerate locus (
◦

Genh)cP
∼= XP as a dense open subscheme, the extension

property of regular functions on normal varieties implies that it suffices to show that the de-
generate locus in (Genh)cP has codimension at least 2. This can be checked by considering the
combinatorial description of G×G-orbits in Genh from [43, Theorem 6]. In characteristic 0,
this is the same combinatorial description as in [50]. �

Lemma C.4.2 implies that VinBunG,cP is isomorphic to Maps◦(X,G\XP /G), where the
superscript ◦ denotes the open locus of maps generically landing in G\XP /G.
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C.5. Defect stratification. Define the closed embedding M ↪→ XP as the composition of the
closed embeddings M ↪→ G/U : m 7→ mU and G/U ↪→ XP : g 7→ (g, 1). From [51, Corollary
4.1.5] we know that M ↪→ XP extends to a closed embedding M ↪→ XP . This induces a map

Maps◦(X,P\M/P−)→ Maps◦(X,G\XP /G) = VinBunG,cP ,

where Maps◦(X,P\M/P−) is the stack of maps X ×S → P\M/P− that generically land in
P\M/P− over every geometric point of S.

C.5.1. Let H+
M = Maps◦(X,M\M/M) denote the stack introduced in §A.5. Recall that there

are two maps
←
h,
→
h : H+

M → BunM . Observe that there is a canonical isomorphism

Maps◦(X,P\M/P−) ∼= BunP ×
BunM ,

←
h

H+
M ×
→
h ,BunM

BunP− .

Thus we have a map of stacks

(C.3) BunP ×
BunM

H+
M ×

BunM
BunP− → VinBunG,cP .

C.5.2. Let ΛG,P = π1(M) denote the quotient of Λ by the subgroup generated by the coroots
of M . Recall that there is a bijection π0(BunM ) ∼= ΛG,P . Let BunµM , µ ∈ ΛG,P denote the
corresponding connected component consisting of M -bundles of degree µ.

Let BunµP (resp. BunλP−) denote the preimage of BunµM (resp. BunλM ) under the projection
BunP → BunM (resp. BunP− → BunM ).

C.5.3. For µ, λ ∈ ΛG,P , let H
+,µ,λ
M denote the preimage of BunµM ×BunλM under (

←
h,
→
h). One

can check using Remark A.5.1 that H
+,µ,λ
M is nonempty if and only if µ− λ lies in the image of

Λpos,Q
U ∩ Λ under the projection Λ→ ΛG,P .

Proposition C.5.4 ([47, Proposition 3.2.2]). (i) For µ, λ ∈ ΛG,P , the restriction of (C.3) to
the corresponding substack

(C.4) BunµP ×
BunµM

H
+,µ,λ
M ×

BunλM

BunλP− → VinBunG,cP

is a locally closed embedding. Let VinBunµ,λG,cP denote the corresponding locally closed substack.

(ii) The locally closed substacks VinBunµ,λG,cP form a stratification of VinBunG,cP . In partic-

ular, the map (C.3) is a bijection at the level of k-points.

We call the stratification above the defect stratification of VinBunG,cP . By (C.2), we have
an identical stratification of VinBunG,P with strata

VinBunµ,λG,P
∼= VinBunµ,λG,cP ×(T/Z(M)).

C.6. Remarks on the case when [G,G] is not simply connected. Note that we have not
assumed that [G,G] is simply connected in this Appendix (unlike in Appendices A–B). Without

this assumption, it is possible for the image of Λpos,Q
U ∩Λ in ΛG,P to be larger than Λpos

G,P . Then
Lemma C.6.12 below shows that the G-stratum VinBunG,G is not necessarily dense in VinBunG
when [G,G] is not simply connected.

We define a slightly different stack VinBuntrue
G . We suggest that VinBuntrue

G is the more
“philosophically correct” definition for VinBunG when [G,G] is not simply connected.

Remark C.6.1. We will continue using the original stack VinBunG in the rest of this article
(for arbitrary G) as it suffices for our purposes, but it is also possible to work directly with
VinBuntrue

G everywhere.
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C.6.2. The idea is to replace the Vinberg semigroup Genh, which is an algebraic monoid, by
its stacky version, which is an algebraic monoidal stack9.

Let Gssc denote the universal cover of [G,G] (as algebraic groups). Then Z(Gssc) is a finite
group scheme containing ker(Gssc → G). Since G = Z(G) · [G,G], we have an isomorphism

(C.5) G ∼= (Gssc×Z(G))/Z(Gssc),

where Z(Gssc) is embedded in Gssc×Z(G) anti-diagonally. Furthermore, the following is well-
known (cf. [50, 42]):

Lemma C.6.3. The isomorphism (C.5) extends to an isomorphism of the Vinberg semigroup
Genh with the the GIT quotient of Gssc

enh×Z(G) by the anti-diagonal action of Z(Gssc).

Lemma C.6.3 motivates us to define the stacky version of the Vinberg semigroup as the
quotient stack

(C.6) (Genh)true := (Gssc
enh×Z(G))/Z(Gssc).

This is an algebraic monoidal stack. By Lemma C.6.3, we have a canonical map

(C.7) (Genh)true → Genh

from the stack quotient to the GIT quotient, and we see that Genh is the coarse moduli space
of (Genh)true.

By (C.5), we see that the homomorphism (C.7) restricts to an isomorphism of groups
Gssc

enh×Z(Gssc) Z(G) ∼= Genh, so we have an open embedding

Genh ↪→ (Genh)true.

Moreover, Z(Gssc
enh) acts freely10 on the non-degenerate locus

◦
Gssc

enh. Thus the open substack

(
◦

Genh)true := (
◦

Gssc
enh×Z(G))/Z(Gssc)

is representable by a scheme, and Lemma C.6.3 implies that (C.7) restricts to an isomorphism

(
◦

Genh)true ∼=
◦

Genh on non-degenerate loci.

Lemma C.6.4. The map (C.7) is an isomorphism if and only if [G,G] is simply connected.

Proof. Recall that Gssc
enh is an algebraic monoid with zero. Thus the action of ker(Gssc → [G,G])

on Gssc
enh is free if and only if the kernel is trivial, i.e., [G,G] is simply connected. Therefore

if [G,G] is not simply connected, the stack quotient (Genh)true cannot be representable by a
scheme.

In the other direction, suppose that [G,G] is simply connected. Then Z(Gssc) ⊂ Z(G) acts
freely on Gssc

enh×Z(G), so (C.7) is an isomorphism by Lemma C.6.3. �

C.6.5. Definition of VinBuntrue
G . As explained in §C.3.1, we have an action of G×G on the

stack (Genh)true, where we are using the identification (C.5). Define

(C.8) VinBuntrue
G = Maps◦(X,G\(Genh)true/G),

where the superscript ◦ denotes the locus of maps that generically land in G\
◦

Genh/G over every
geometric point of a test scheme S.

9An algebraic monoidal stack Y is an algebraic stack Y with a coherently associative composition law Y×Y→ Y

and a morphism Spec(k)→ Y such that for any scheme S, the composition S → Spec(k)→ Y is a unit object of
Y(S).

10The quotient
◦

Genh/Z(Genh) is the wonderful compactification of G/Z(G).
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C.6.6. The map (C.7) induces a canonical map of stacks

(C.9) VinBuntrue
G → VinBunG

over BunG×BunG.
The open embedding Genh ↪→ (Genh)true induces an open embedding

VinBunG,G ↪→ VinBuntrue
G

over VinBunG.

C.6.7. The projection Gssc
enh×Z(G) → Z(G) induces a homomorphism of monoidal stacks

(Genh)true → Z(G)/Z(Gssc). Note that Gab,st := Z(G)/Z(Gssc) is the stacky abelianization of
G defined in [30]. By (C.5), we also get a homomorphism of group stacks G → Gab,st. The
G×G-action on (Genh)true is compatible with these maps to Gab,st.

Consider the map Spec(k)→ Gab,st corresponding to 1 ∈ Z(G). We have Cartesian squares

Gssc
enh

//

��

(Genh)true

��

Spec(k) // Gab,st

G ×
Gab,st

G //

��

G×G

��

Spec(k) // Gab,st

where G×G maps to Gab,st by (g1, g2) 7→ g1g
−1
2 . Note that G×Gab,st G is isomorphic to a

semidirect product of G and Gssc. Since Gab,st is a group stack, it follows formally that

(Genh)true/(G×G) ∼= Gssc
enh/(G ×

Gab,st
G).

We can also repeat the above discussion at the coarse level: by Lemma C.6.3, we have
Genh = (Gssc

enh×Z(G))//Z(Gssc), where // denotes the GIT quotient. Thus the projection to the

second factor induces a homomorphism of monoids Genh → Z(G)//Z(Gssc) = Z(G)/Z([G,G]) =
G/[G,G] =: Gab such that the G×G-action on Genh lies over Gab. Let (Genh)1 denote the
fiber Genh×Gab Spec(k) over 1 ∈ Gab(k). Then it again follows formally that

Genh/(G×G) ∼= (Genh)1/G ×
Gab

G.

We have a group homomorphism G×Gab,st G → G×Gab G whose kernel is isomorphic to
ker(Gssc → [G,G]). We also have a finite homomorphism of monoids Gssc

enh → (Genh)1. Thus
we deduce that there is a commutative diagram

VinBuntrue
G

�� **

Maps◦(X, (Genh)1/(G×Gab,st G)) //

��

BunG×
Gab,st G

��

VinBunG // BunG×
Gab G

// BunG×BunG

where the square is Cartesian, the superscript ◦ denotes the substack of maps generically landing

in (
◦

Genh)1/(G×Gab,st G), and the composition of the left vertical maps equals the map (C.9).
Here we have factored the map (C.9) into a “change of space” map and a “change of group”
map. The following lemma is well-known.
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Lemma C.6.8. Let H be a connected reductive group, and let A ⊂ Z(H) be a finite central
subgroup. Then BunH → BunH/A is a torsor by the group stack BunA over an open and closed
substack of BunH/A. More specifically, this substack is the union of the connected components
in π0(BunH/A) = π1(H/A) corresponding to π1(H) ⊂ π1(H/A).

Proof. Let B be a Borel subgroup of H. Then BunB → BunH and BunB/A → BunH/A are
surjective by [21]. Thus to prove the statement about the image of BunH in BunH/A, it suffices
to consider π0(BunB) → π0(BunB/A). This reduces to an analogous statement in the case
where H is a torus, which is straightforward.

It is a standard fact that the action of BunA on BunH defines an isomorphism between
BunA×BunH and the fiber product BunH ×BunH/A BunH . Therefore to prove that the map
from BunH to its image in BunH/A is a torsor, we must show that this map is flat. The map is
flat because it is a morphism between smooth stacks of the same dimension with 0-dimensional
fibers. �

We now consider the “change of space” map

(C.10) VinBuntrue
G = Maps◦

(
X,Gssc

enh/(G ×
Gab,st

G)

)
→ Maps◦

(
X, (Genh)1/(G ×

Gab,st
G)

)
.

Lemma C.6.9. Let Y1 → Y2 be a finite schematic morphism of stacks. Then the induced
morphism Maps(X,Y1)→ Maps(X,Y2) is also finite schematic.

Proof. Fix a test scheme S and a map XS := X ×S → Y2. Let Y denote the fiber product
XS ×Y2 Y1, which is representable by a finite scheme over XS . Then the corresponding fiber
product of S and Maps(X,Y1) over Maps(X,Y2) is representable by the S-scheme Sect(XS , Y )
of sections of Y → XS . It is well-known that since Y → XS is affine, Sect(XS , Y )→ S is also
affine. Therefore to show that Sect(XS , Y ) → S is finite, it suffices to show that it is proper.
We use the valuative criterion of properness:

Let R be a discrete valuation ring with field of fractions K, and suppose that we have a map
Spec(R) → S and a section XK := X ×Spec(K) → Y over XS . This section and the natural
map Spec(K) → Spec(R) define a section XK → YR := Y ×S Spec(R). Let ZK denote the
image of XK → YR, and let ZR denote the scheme-theoretic closure of ZK in YR. Extending
the section XK → Y to a section XR := X ×Spec(R) → Y is equivalent to showing that the
projection ZR → XR is an isomorphism. Note that ZR is an integral scheme (because ZK is)
and the map ZR → XR is birational (because the map ZK → XK is an isomorphism). On
the other hand, the map ZR → XR is finite since YR → XR is finite. Lastly, smoothness of X
implies that XR is a regular scheme. Hence XR is normal, and ZR → XR is an isomorphism.
This checks the condition of the valuative criterion and hence proves the lemma. �

Let A denote the finite abelian group scheme ker(Gssc → [G,G]).

Corollary C.6.10. The map (C.10) is schematic and finite. More specifically, it is the com-
position of an A-torsor followed by a closed embedding.

Proof. The map Gssc
enh → (Genh)1 is finite, and the preimage of (

◦
Genh)1 equals

◦
Gssc

enh. Then
Lemma C.6.9 implies that the map (C.10) is schematic and finite. Let

Y ⊂ Maps◦(X, (Genh)1/(G ×
Gab,st

G))

denote the (scheme-theoretic) image, which is a closed substack. Take (P, β) ∈ Y(S) for a test
scheme S, where P is a G×Gab,st G-torsor over XS := X ×S and β is a section XS → ((Genh)1)P

over XS such that β|Spec(F )×S lands in ((
◦

Genh)1)P. Since
◦

Gssc
enh → (

◦
Genh)1 is an A-torsor,
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the set of sections β̃|Spec(F )×S : Spec(F )×S → ((
◦

Genh)1)P lifting β has a simply transitive
action by A(Spec(F )×S). Since A is finite over k and X is geometrically connected, we
deduce that A(Spec(F )×S) = A(S). Thus the canonical A(S)-action on the set of sections

β̃ : XS → (Gssc
enh)P lifting β is simply transitive. By definition of Y, a lift β̃ exists after restricting

along some fppf covering S′ → S. We conclude that VinBuntrue
G → Y is an A-torsor. �

Proposition C.6.11. The map VinBuntrue
G → VinBunG is finite schematic.

Proof. We first show that the map VinBuntrue
G → VinBunG is proper. By Lemma C.6.8, the

map BunG×
Gab,st G → BunG×

Gab G is proper. Thus by base change, the map

Maps◦
(
X, (Genh)1/(G ×

Gab,st
G)

)
→ Maps◦

(
X, (Genh)1/(G ×

Gab
G)

)
= VinBunG

is proper. Composing this map with (C.10), which is finite by Corollary C.6.10, we conclude
that VinBuntrue

G → VinBunG is proper.
Next we prove that the map VinBuntrue

G → VinBunG is schematic. Let S be an affine scheme.
A map S → VinBunG is the datum of a G×Gab G-torsor P on X ×S and a G×Gab G-equivariant

map P → (Genh)1. Moreover, there is an open subset
◦
X ⊂ X such that P| ◦

X ×S
is sent to

(
◦

Genh)1. Recall that we have a surjective homomorphism G×Gab,st G→ G×Gab G with kernel
A := ker(Gssc → [G,G]). Then an S′-point of the fiber product Y := S×VinBunG VinBuntrue

G

parametrizes a G×Gab,st G-torsor P̃ on X ×S′ and a G×Gab,st G-equivariant map β̃ : P̃→ Gssc
enh

such that the G×Gab G-torsor induced by P̃ is isomorphic to P|X ×S′ , and the diagram

P̃

��

β̃
// Gssc

enh

��

P|X ×S′ // (Genh)1

commutes. This implies that P̃| ◦
X ×S′

lands in
◦

Gssc
enh. Since

◦
Gssc

enh → (
◦

Genh)1 is an A-torsor, we

get an isomorphism

P̃| ◦
X ×S′

∼= P| ◦
X ×S′

×
(
◦

Genh)1

◦
Gssc

enh,

where the r.h.s. only depends on the map S → VinBunG. Thus (P̃, β̃) are determined by their

restrictions to the formal completion of (X −
◦
X)×S′ in X ×S′. Using twisted versions of the

affine Grassmannian, we deduce that the fiber product Y is a closed subscheme of a projective
ind-scheme over S. Since Y is of finite type, we conclude that Y is a scheme.

We have shown that VinBuntrue
G → VinBunG is a proper schematic map. One observes from

Lemma C.6.8 and Corollary C.6.10 that VinBuntrue
G → VinBunG is also quasi-finite. Therefore

this map is finite schematic. �

Lemma C.6.12. The closure of the open substack VinBunG,G in VinBunG intersects the stra-

tum VinBunµ,λG,P only if µ− λ ∈ Λpos
G,P .

Proof. The image of the finite map VinBuntrue
G → VinBunG is a closed substack containing the

G-stratum. Let P be a standard parabolic subgroup of G with Levi factor M . Let G̃ denote
Gssc×Z(G), and let M̃, P̃ denote the preimages of M,P under the isogeny G̃ → G. We have
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the corresponding boundary degeneration XP̃ ⊂ G̃enh and its affine closure XP̃ . Define the

closed embedding M̃ ↪→ XP̃ as in §C.5, and let M̃ denote the closure of M̃ in XP̃ . For a place
v of X, Remark A.5.1 implies that

M̃(ov)\(M̃(ov) ∩ M̃(Fv))/M̃(ov) = Λpos,Q
U ∩ ΛG̃,

and Λpos,Q
U ∩ ΛG̃ = Λpos

U since [G̃, G̃] is simply connected. Thus we deduce from the construc-

tion of the defect stratification in §C.5 that the image of VinBuntrue
G → VinBunG intersects

VinBunµ,λG,P if and only if µ− λ ∈ Λpos
G,P . This implies the lemma. �

C.7. The function b. Suppose k = Fq. Let

∆ : BunG → BunG×BunG

denote the diagonal morphism. Given G-bundles F1
G,F

2
G ∈ BunG(Fq), let b(F1

G,F
2
G) denote the

trace of the geometric Frobenius acting on the ∗-stalk of the complex ∆∗(Q`) over the point
(F1
G,F

2
G) ∈ (BunG×BunG)(Fq).

C.7.1. Recall from §4.2.1 that AsympP (δK) is a K ×K-invariant function in C∞b (XP (A)),
where δK is the characteristic function of K on G(A). Let

β : X → (XP )F1
G,F

2
G

denote a section that generically lands in the non-degenerate locus (XP )F1
G,F

2
G

. Then for any

v ∈ |X|, choosing trivializations of FiG×X Spec(ov) defines an isomorphism (XP )F2
G,F

2
G

(ov) ∼=
XP (ov). This defines an element βv ∈ XP (Fv) ∩XP (ov), and the Kv ×Kv-orbit of βv does not
depend on the choice of trivializations. Non-degeneracy of β implies that (βv) ∈ XP (A). We
define AsympP (δK)(β) to be the value of AsympP (δK) at this adelic point.

Theorem C.7.2. Let E = Q`. We have an equality

b(F1
G,F

2
G) =

∑
P

(−1)dimZ(M)
∑
β

AsympP (δK)(β),

where P ranges over the standard parabolic subgroups of G, and β ranges over the non-degenerate
sections β : X → (XP )F1

G,F
2
G

.

The strategy for proving Theorem C.7.2 was suggested by Drinfeld, and it consists of com-
pactifying the diagonal morphism of BunG. The geometry of the compactification then reduces
to a theorem of [47], and the corresponding Grothendieck functions are computed using the
facts reviewed in Appendix B. The proof of Theorem C.7.2 is given at the end of §C.9.

C.8. Compactifications of the diagonal morphism of BunG. The diagonal morphism ∆
is in general not proper, and one would like to compactify it (e.g., to compute ∗-restrictions of

∆∗). We first review the definition of the stack Bun
′
G (denoted by BunG in [47]), which is a com-

pactification of the morphism BunG×BZ(G) → BunG×BunG, which ∆ factors through. For
the purposes of this paper, we define a slightly different stack BunG, which is a compactification
of ∆ when G is semisimple. When G is not semisimple, BunG is not quite a compactification
of ∆, but it is equally good for our purposes.
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C.8.1. Bun
′
G. The action of Z(Genh) = T on Genh induces a T -action on VinBunG. Define

Bun
′
G = VinBunG /T . There is an open embedding VinBunG,G /T = BunG×BZ(G) ↪→ Bun

′
G.

Observe that ∆ factors as

BunG → BunG×BZ(G) ↪→ Bun
′
G → BunG×BunG,

where BZ(G) is the classifying stack of Z(G)-bundles. The following lemma is well-known:

Lemma C.8.2. The map Bun
′
G → BunG×BunG is schematic and projective11.

Proof. Let F1
G,F

2
G ∈ BunG(S) for a test scheme S. Let Sect(XS , (Genh)F1

G,F
2
G

) denote the

S-scheme of sections for the fiber bundle (Genh)F1
G,F

2
G
→ XS := X ×S. Then

(C.11) Bun
′
G ×

BunG×BunG
S ∼= Sect◦(XS , (Genh)F1

G,F
2
G

)/T,

where the superscript ◦ denotes the open locus of sections generically landing in (
◦

Genh)F1
G,F

2
G

.

We wish to show (C.11) is a projective scheme over S.
Let ∆(λ̌) denote the Weyl G-module of highest weight λ̌ ∈ Λ̌+

G. It is known from the general
theory of reductive monoids (cf. proof of [51, Proposition 2.3.2]) that there exists a finite12 map

(C.12) Genh →
∏

End(∆(λ̌)⊗ kλ̌)×Tadj,

where the product ranges over any finite set of generators for the monoid Λ̌+
G. The image of

(C.12) satisfies the Plücker relations (cf. [11, 10]). Therefore by considering the Genh-modules
det(∆(λ̌)⊗ kλ̌) = det(∆(λ̌))⊗ kdim(∆(λ̌))λ̌, we see that the composition of (C.12) with the

projection to
∏

End(∆(λ̌)⊗ kλ̌) is a finite map. By Lemma C.6.9, we can reduce to showing
that

(C.13) Sect◦(XS ,
∏

End(∆(λ̌)⊗ kλ̌)F1
G,F

2
G

)/T

is representable by a projective scheme over S. Here the superscript ◦ denotes the locus of
maps generically landing in

∏
(End(∆(λ̌)⊗ kλ̌)− {0})F1

G,F
2
G

.

For a test scheme S′ → S, an S′-point of the stack (C.13) is the data of ((FT )S′ , βλ̌) where
(FT )S′ is a T -bundle over S′ and βλ̌ is an OX ×S′ -module map

∆(λ̌)F2
G
⊗
OS

Lλ̌ → ∆(λ̌)F1
G
⊗
OS

OS′

that is generically nonzero over all geometric points of S′, where Lλ̌ = (kλ̌)(FT )S′
is the corre-

sponding line bundle on S′. Observe that βλ̌ is equivalent to an S′-fiberwise nonzero map

(C.14) π′∗(Lλ̌)→ (∆(λ̌)∗F2
G
⊗∆(λ̌)F1

G
) ⊗
OS

OS′ ,

where π′ is the projection X ×S′ → S′. Set E = ∆(λ̌)∗
F2
G
⊗∆(λ̌)F1

G
, which is a locally free

OX ×S-module. Let π denote the projection X ×S → S, and observe that π∗(E) is a perfect
complex that commutes with base change (here and elsewhere, π∗ denotes the derived direct
image functor). Then by adjunction, (C.14) is equivalent to a map in the derived category of
coherent sheaves on S′

Lλ̌ → π∗(E) ⊗
OS

OS′

11The proof shows that there exists a coherent sheaf F on the stack BunG×BunG and a closed embedding

Bun
′
G ↪→ P(F).

12In the particular case of the Vinberg semigroup, one can deduce that this map is a closed embedding using
[13, Exercises 6.1E, 6.2E].
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that is nonzero on every fiber of S′ (here the tensor product is derived). Applying derived
Hom(?,OS′), this map is equivalent to a fiberwise nonzero map

(C.15) Hom(π∗(E),OS) ⊗
OS

OS′ → L−1
λ̌
.

Since π∗(E)⊗OS ks lives in cohomological degrees 0, 1 for any point Spec(ks) → S, we deduce
that π∗(E) is locally quasi-isomorphic to a complex of locally free OS-modules living in degrees
0, 1. Therefore Hom(π∗(E),OS) lives in cohomological degrees −1, 0. We conclude that (C.15)
is equivalent to a surjection of OS′ -modules

H0Hom(π∗(E),OS) ⊗
OS

OS′ → L−1
λ̌
,

and H0Hom(π∗(E),OS) commutes with base change. We have shown that for fixed λ̌, the data
(L−1

λ̌
, βλ̌) defines an S′-point of the projective S-scheme ProjS SymOS

(H0Hom(π∗E,OS)). By

the Plücker relations, we conclude that the stack (C.13) is representable by a closed subscheme
of a projective S-scheme. �

C.8.3. Let Z0(G) denote the neutral connected component of the center of G. Then we have
a finite map T/Z0(G)→ T/Z(G) = Tadj. The character lattice of Tadj corresponds to the root

lattice in Λ̌. If the Langlands dual group Ǧ does not have a simply connected derived group,
then the root lattice is not saturated in Λ̌, so T/Z0(G) 6= T/Z(G) in general.

Recall that k[Tadj] is the semigroup algebra of Λ̌pos
G . Define T/Z0(G) so that k[T/Z0(G)] is

the semigroup algebra of Λ̌pos,Q
G ∩ Λ̌. There is a natural finite map

T/Z0(G)→ Tadj

extending the map T/Z0(G)→ Tadj.

C.8.4. BunG. Consider the base change

(VinBunG)
T/Z0(G)

:= VinBunG ×
Tadj

T/Z0(G)

over T/Z0(G). Then T acts diagonally on (VinBunG)
T/Z0(G)

, and we define

BunG = (VinBunG)
T/Z0(G)

/T.

Since π̄−1
Bun(Tadj) = VinBunG,G = BunG×Tadj, we see that there is an open embedding

BunG×BZ0(G) ↪→ BunG. There is a natural finite map BunG → Bun
′
G, and we have the

commutative diagram

BunG // BunG×BZ0(G)
� � //

��

BunG

��

BunG×BZ(G) �
�

// Bun
′
G

// BunG×BunG

factoring the diagonal ∆. Then the composite map ∆ : BunG → BunG×BunG is also proper,
so BunG is a “compactification” of ∆. This is the compactification that we will use to prove
Theorem C.7.2.

Example C.8.5. Let G = SL(2). Then Z0(G) = {1}, and the map T/Z0(G) → Tadj cor-

responds to the map A1 → A1 : ε 7→ ε2. An S-point of BunG is a collection (L1,L2, l, β, ε),
where

(a) L1,L2 are rank 2 vector bundles on X ×S with trivializations of their determinants,
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(b) l is a line bundle on S,
(c) β ∈ Hom(L2,L1)⊗ l is not equal to 0 on X × s for every geometric point s→ S,
(d) ε ∈ l, and
(e) the equation detβ = ε2 holds.

In comparison, an S-point of Bun
′
G is a collection (L1,L2, l, β) satisfying (a)–(c) above.

C.8.6. We have a Cartesian square

(C.16) BunG×T //

��

BunG

��

BunG×(T/Z0(G))� _



��

// BunG×BZ0(G)� _

��

(VinBunG)
T/Z0(G)

// BunG

where the horizontal maps are T -torsors, and the lower vertical maps are open embeddings.
Since Z0(G) is connected, T → T/Z0(G) is a trivial Z0(G)-bundle. Therefore the pushforward of
the constant sheaf (Q`)T to T/Z0(G) equals (Q`)T/Z0(G)⊗H∗(Z0(G),Q`). Thus by smooth base
change, to compute the function b it suffices to compute the trace of the geometric Frobenius
acting on the ∗-stalks of ∗Q`.

C.9. The ∗-extension of the constant sheaf. Let

 : BunG×(T/Z0(G)) ↪→ (VinBunG)
T/Z0(G)

denote the open embedding. We want to compute the ∗-restriction of ∗Q` to the strata

VinBunµ,λG,P ×Tadj
T/Z0(G) for µ, λ ∈ ΛG,P .

Recall that the P -locus (Tadj)P is isomorphic to T/Z(M).

Lemma C.9.1. The reduced part of (Tadj)P ×Tadj
T/Z0(G) is isomorphic to T/Z0(M).

Proof. The locally closed embedding (Tadj)P = G|ΓM |m ×{0} ↪→ Tadj = (A1)|ΓG| identifies with
the spectrum of the algebra map

(C.17) k[α̌j , j ∈ ΓG]→ k[α̌±1
i , i ∈ ΓM ]

sending α̌i 7→ α̌i for i ∈ ΓM and α̌j 7→ 0 for j ∈ ΓG − ΓM (here we consider α̌i as a character

and use the multiplicative notation). Note that k[α̌j , j ∈ ΓG] is the semigroup algebra of Λ̌pos
G .

The projection T/Z0(G)→ T/Z(G) is the spectrum of the inclusion of semigroup algebras

k[Λ̌pos
G ] ↪→ k[Λ̌pos,Q

G ∩ Λ̌].

Therefore (Tadj)P ×Tadj
T/Z0(G) is the spectrum of the algebra

(C.18) k[α̌±1
i , i ∈ ΓM ] ⊗

k[Λ̌pos
G ]

k[Λ̌pos,Q
G ∩ Λ̌].

Since the map (C.17) sends α̌j 7→ 0 for j ∈ ΓG − ΓM , the reduced algebra of (C.18) equals

(C.19) k[α̌±1
i , i ∈ ΓM ] ⊗

k[Λ̌pos
M ]

k[Λ̌pos,Q
M ∩ Λ̌].

Since the non-negative integral span of Λ̌pos,Q
M ∩ Λ̌ and −α̌i, i ∈ ΓM is equal to the lattice

Λ̌T/Z0(M) ⊂ Λ̌, the algebra (C.19) equals k[T/Z0(M)]. �
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Recall from (C.2) that we have an isomorphism VinBunG,P ∼= VinBunG,cP ×(T/Z(M)).
Lemma C.9.1 implies that we have embeddings

(C.20) ιP : VinBunG,cP ×(T/Z0(M)) ↪→ (VinBunG)
T/Z0(G)

that form a stratification as P ranges over all standard parabolic subgroups.
For µ, λ ∈ ΛG,P , let

ιµ,λP : VinBunµ,λG,cP ×(T/Z0(M)) ↪→ (VinBunG)
T/Z0(G)

denote the locally closed embedding defined by (C.20) and the defect stratification from §C.5.
The following is proved in [47, Theorem B] in the case P = B. We give a proof using

Proposition B.7.5 at the end of this Appendix.

Theorem C.9.2. Suppose k = Fq. The trace of geometric Frobenius on ∗-stalks of ι∗P (∗(Q`))
sends

(C.21) (F1
G,F

2
G, β, t) ∈ (VinBunG,cP ×T/Z0(M))(Fq) 7→ (1− q)|ΓG|−|ΓM |AsympP (δK)(β).

Here we use Lemma C.4.2 to identify β with a section X → (XP )F1
G,F

2
G

, and AsympP (δK)(β)
is defined in §C.7.1.

Assuming Theorem C.9.2, we prove Theorem C.7.2.

Proof of Theorem C.7.2. Let BunG denote the compactification of ∆ defined in §C.8.4. Fac-
tor ∆ into ̄ : BunG → BunG and the proper map ∆ : BunG → BunG×BunG. For a
sheaf F, we will use fF to denote its Grothendieck function, i.e., the trace of the geometric
Frobenius acting on the ∗-stalks over the Fq-points. By the Grothendieck-Lefschetz trace for-

mula, b(F1
G,F

2
G) equals the sum of the values of f̄∗Q` at the points of BunG(Fq) lying over

(F1
G,F

2
G) ∈ (BunG×BunG)(Fq).

We have the T -torsor (VinBunG)
T/Z0(G)

→ BunG. Let

 : BunG×T/Z0(G) ↪→ (VinBunG)
T/Z0(G)

denote the open embedding. Recall that T → T/Z0(G) is a trivial Z0(G)-bundle, so the push-
forward of (Q`)T to T/Z0(G) equals (Q`)T/Z0(G)⊗H∗(Z0(G),Q`). The trace of the geometric

Frobenius acting on H∗(Z0(G),Q`) equals (1−q)dim(Z0(G)). Since any T -torsor over Fq is trivial,
we deduce from the Cartesian square (C.16) and smooth base change that

b(F1
G,F

2
G) = (−1)dimT (1− q)−|ΓG|

∑
β̃

f∗Q`(β̃),

where the sum is over β̃ ∈ (VinBunG)
T/Z0(G)

(Fq) mapping to (F1
G,F

2
G). From (C.20), we

have a stratification of (VinBunG)
T/Z0(G)

by VinBunG,cP ×(T/Z0(M)), where P ranges over

all standard parabolic subgroups. Theorem C.9.2 implies that

fι∗P ∗Q`
(F1
G,F

2
G, β, t) = (1− q)|ΓG|−|ΓM |AsympP (δK)(β)

for β : X → (XP )F1
G,F

2
G

a non-degenerate section and t ∈ (T/Z0(M))(Fq). Putting it all
together, we prove the theorem. �

The remainder of this Appendix works towards setting up the proof of Theorem C.9.2, which
is given at the end.



ON AN INVARIANT BILINEAR FORM VIA ASYMPTOTICS 59

C.10. Reduction to the Hecke stack. The isomorphism

BunµP ×
BunµM

H
+,µ,λ
M ×

BunλM

BunλP−
∼= VinBunµ,λG,cP

induced by (C.4) allows us to define the projection map

prµ,λM : VinBunµ,λG,cP → H
+,µ,λ
M ,

which is smooth with equidimensional fibers.

For (F1
G,F

2
G, β) ∈ VinBunµ,λG,cP (Fq), let (F1

M ,F
2
M , βM ) := prµ,λM (β) ∈ H

+,µ,λ
M (Fq). Choosing

trivializations F1
M ,F

2
M over Spec(ov), the M -morphism βM defines an element (mv) in the

restricted product
∏
v(M(ov) ∩M(Fv)) with respect to the open subgroups M(ov) ⊂ M(Fv).

The M(ov)×M(ov)-orbit of mv does not depend on the choice of trivializations. One deduces
from (3.9) that

(C.22) AsympP,v(δKv )(βv) = νM,v(mv),

where νM,v is the KM,v-bi-invariant measure on M(Fv) defined in §3.3.4. Thus the function

(C.21) reduces to a function on H
+,µ,λ
M (Fq).

On the other hand, we have a similar reduction of ιµ,λ∗P (∗(Q`)) by a modified version of [47,
Theorem 4.3.1]:

Recall from Lemma C.6.12 that ιµ,λ∗P (∗(Q`)) = 0 unless µ − λ ∈ Λpos
G,P . Assuming that

µ− λ ∈ Λpos
G,P , the relevant definitions and results from §B.7 still hold, without the assumption

that [G,G] is simply connected.

Theorem C.10.1. Let µ, λ ∈ ΛG,P with µ− λ ∈ Λpos
G,P . The ∗-restriction ιµ,λ∗P (∗(Q`)) to the

stratum VinBunµ,λG,cP ×(T/Z0(M)) is equal to

prµ,λ∗M

(
Q` �̃ Υ̃(ǔP )µ−λ

)
�(Q`( 1

2 )[1])−〈2ρ̌P ,µ−λ〉⊗H∗(Z0(M)/Z0(G),Q`).

Here Υ̃(ǔP )µ−λ is the factorization algebra on Gr+
M,Xµ−λ

defined in §B.7, and we can form the

sheaf (Q`)BunM �̃ Υ̃(ǔP )µ−λ ∈ D(H+
M,Xµ−λ

) using (A.5).

The proof of Theorem C.10.1 follows the same reasoning as the proof of [47, Theorem 4.3.1],
using the local models defined in loc. cit, which we now review.

C.11. Local models. Recall that π̄ : Genh → Tadj denotes the projection and s̄ : Tadj → Genh

is a section. Let (Genh)≥P := π̄−1((Tadj)≥P ) denote the open submonoid.
Define YP to be the scheme representing the substack

Maps◦(X,U−\(Genh)≥P /P ) ⊂ BunU− ×
BunG

VinBunG,≥P ×
BunG

BunP

of maps generically landing in U− · s̄((Tadj)≥P ) · P . Then π̄ induces a map

YP → (Tadj)≥P .

For θ ∈ ΛG,P , let YP,θ denote the preimage of Bun−θM under the projection BunP → BunM .

C.11.1. One can define both left and right actions of Tadj on YP in a similar way as in §C.3.
Then the action of T/Z(M) ↪→ Tadj defines an isomorphism

YP ∼= YPstrict×(T/Z(M)),

where YPstrict := YP ×Tadj
Z(M)/Z(G) is the local model for VinBunG,≥P,strict considered in [47,

§6.1].
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C.11.2. Let eP = s̄(cP ) and (Genh)≥P,strict = π̄−1({1}×Z(M)/Z(G)). By [51, Theorem
4.2.10], we have

eP · (Genh)≥P,strict · eP = eP · (Genh)cP · eP = M.

The map (Genh)≥P,strict →M factors through U−\(Genh)≥P,strict/U . Therefore we have a map

πY : YP,θ → Gr+
M,Xθ

×(T/Z(M)).

The embedding M = eP · (Genh)cP · eP ↪→ (Genh)cP induces a section

σY : Gr+
M,Xθ

×(T/Z(M))→ YP,θ

of πY. Both πY and σY are compatible with the projection

YP → (Tadj)≥P = G|ΓM |m ×(A1)|ΓG|−|ΓM | → G|ΓM |m = T/Z(M).

C.11.3. The scheme YP,θ is a local model for VinBunG,≥P . We will need to consider

ỸP,θ := YP,θ ×
Tadj

T/Z0(G),

which is a local model for VinBunG,≥P ×Tadj
T/Z0(G). Let (T/Z0(G))≥P and (T/Z0(G))P

denote the base changes of the corresponding loci in Tadj, so that ỸP,θ lies over (T/Z0(G))≥P .
By base change, we get maps

Gr+
M,Xθ

×(T/Z0(G))P
σ̃Y−→ ỸP,θ

π̃Y−→ Gr+
M,Xθ

×(T/Z0(G))P .

At the level of reduced schemes, Lemma C.9.1 implies that we have maps

(Gr+
M,Xθ

)red×(T/Z0(M))
σ̃Y−→ Ỹ

P,θ
red

π̃Y−→ (Gr+
M,Xθ

)red×(T/Z0(M)).

C.12. Contracting action on Ỹ
P,θ
red . Fix a cocharacter νM : GM → Z0(M) ⊂ T which con-

tracts U− to the element 1 ∈ U−. Then νM defines a Gm-action on YP,θ that contracts YP,θ

onto the section σY by [47, Lemma 6.5.6].

By definition, the induced Gm-action on (Tadj)≥P is via the composition Gm
−2νM−→ T and the

usual T -action on Tadj. Therefore if we consider the Gm-action on T/Z0(G) via the composition

Gm
−2νM−→ T and the usual T -action on T/Z0(G), we get a Gm-action on ỸP,θ, and hence on Ỹ

P,θ
red .

Moreover from Lemma C.9.1 we deduce that this Gm-action contracts Ỹ
P,θ
red onto the section

(Gr+
M,Xθ

)red×(T/Z0(M)).

C.12.1. We are now ready to prove Theorem C.10.1.

Proof of Theorem C.10.1. Since the open locus VinBunG,≥P contains the P - and G-loci, to

compute ιµ,λ∗P ∗Q`, we may restrict to VinBunG,≥P ×Tadj
T/Z0(G).

Let Y
P,θ
G ⊂ YP,θ denote the G-locus: the preimage of Tadj under the projection to Tadj. Set

Ỹ
P,θ
G = Y

P,θ
G ×Tadj

(T/Z0(G)). The Tadj-action on YP,θ induces an isomorphism

Y
P,θ
G
∼=
◦
ZP,θ ×Tadj,

where
◦
ZP,θ is the open Zastava space (see §B.8.1). Hence there is an isomorphism

Ỹ
P,θ
G
∼=
◦
ZP,θ ×(T/Z0(G)).
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Let G : ỸP,θG ↪→ ỸP,θ denote the open embedding. Then the assertion of the theorem reduces,
as explained in [10, §3, §8], to proving that

(C.23) σ̃∗Y(G∗(Q`)) ∼= Υ̃(ǔP )θ �(Q`( 1
2 )[1])−〈2ρ̌P ,θ〉⊗H∗(Z0(M)/Z0(G),Q`).

Since we are working with étale sheaves, we can work at the level of reduced schemes. Then
we can apply the contraction principle (cf. [10, §5], [47, Lemma 7.2.1]) to the Gm-action on

Ỹ
P,θ
red defined in §C.12. This gives an isomorphism σ̃∗Y(G∗(Q`)) ∼= π̃Y∗(G∗(Q`)). At the level of

reduced schemes,

π̃Y ◦ G : YP,θG,red
∼=
◦
ZP,θ ×(T/Z0(G))→ (Gr+

M,Xθ
)red×(T/Z0(M))

is the product of
◦
πZ and the natural projection T/Z0(G) → T/Z0(M). Recall from (B.5)

that there is a canonical isomorphism Υ̃(ǔP )θ ∼= (
◦
πZ)∗(IC◦

ZP,θ
). Noting that

◦
ZP,θ is smooth of

dimension 〈2ρ̌P , θ〉, we get the identification

(
◦
πZ)∗(Q`) ∼= Υ̃(ǔP )θ ⊗(Q`( 1

2 )[1])−〈2ρ̌P ,θ〉.

Since Z0(M)/Z0(G) is a torus, we observe that T/Z0(G)→ T/Z0(M) is a trivial Z0(M)/Z0(G)-
bundle. Equation (C.23), and hence the theorem, now follows. �

Proof of Theorem C.9.2. The trace of the geometric Frobenius on H∗(Gm,Q`) equals 1 − q,
and Z0(M)/Z0(G) is a product of |ΓG| − |ΓM | copies of Gm. Therefore the trace of geometric
Frobenius on H∗(Z0(M)/Z0(G),Q`) equals (1− q)|ΓG|−|ΓM |. Theorem C.9.2 now follows from
Theorem C.10.1, Proposition B.7.5, and (C.22). �
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