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Abstract. The program of Sakellaridis and Venkatesh proposes a unified framework to

study integral representations of L-functions through the lens of spherical varieties. For X
an affine spherical variety, the (hypothetical) IC complex of the infinite-dimensional formal

arc space of X is conjecturally related to special values of local unramified L-functions. We
formulate this relation precisely using a new conjectural geometric construction of the crystal

basis of a finite-dimensional representation (determined by X) of the dual group. We prove

these conjectures for a large class of spherical varieties. This is joint work with Yiannis
Sakellaridis.
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Let Fq be a finite field, k = Fq, F = Fq((t)) the local field and O = Fq[[t]] the ring of integers.
(After the introduction I will replace F with k everywhere while keeping the same notation.
One can also take k = C.) Let G be a connected reductive group over F. For simplicity in this
talk we assume G is split (but our results hold without it).

1. Spherical varieties

1.1. What is a spherical variety? A G-variety X over Fq is called spherical if Xk is a normal
variety with an open dense orbit of a Borel Bk ⊂ Gk after base change to k.

One should think of this as a finiteness property. For example, Brion proved the above
definition is equivalent to Xk having finitely many Bk orbits. The point is that spherical
varieties have good combinatorics: they have now been classified (over C) in a way analogous
to the classification of split reductive groups via root datum. If you want to cross the bridge of
Langlands duality, you will need to use a little combinatorics at some point.

The following also hold if k has characteristic 0.

Theorem 1 ([VK]). An affine variety X is spherical if and only if k[X] has multiplicity one
as an algebraic Gk-representation.

Theorem 2 ([SV, Theorem 5.1.5]). If X• is a quasi-affine spherical variety satisfying the wave-
front assumption, then HomG(F )(π,C

∞(X•(F ))) is finite dimensional for all smooth irreducible
G(F )-representations π.
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Most results for spherical varieties are in characteristic 0 as Frobenius introduces some new
cases in characteristic p. If you assume existence of an integral model for X then everything
holds for p large enough.

Example 1. I’ll give more explicit examples later, but for now some examples of spherical
varieties are:

• toric varieties (the same definition with G = T a torus)
• symmetric spaces K\G, which have been studied extensively in representation theory

and number theory
– As a particular case of a symmetric space, consider X = G′ a reductive group,

acted on by G = G′ ×G′ via left and right multiplication. We will refer to this as
the group case.

1.2. Why are they relevant? We give a simplified, imprecise summary of the local conjec-
tures of Sakellaridis [Sak12], further developed in joint work with Venkatesh [SV]. For a much
better succinct summary of the conjectures of Sakellaridis–Venkatesh, see the introduction of
[GW].

Conjecture 1 (Sakellaridis, Sakellaridis–Venkatesh). For any affine spherical G-variety X 1,
and an irreducible unitary G(F )-representation π, there is an “integral” (more precisely, |PX |2π
is really a Hermitian pairing π ⊗ π → C but let’s pretend it’s just a number given by some
integral)

|PX |2π
involving the IC function of X(O) such that

(i) |PX |2π 6= 0 determines a functorial lifting of π to σ ∈ Irr(GX(F )) corresponding to a map
ǦX(C)→ Ǧ(C). Meaning: if π corresponds under Local Langlands to a homomorphism
WF → Ǧ(C) where WF is the Weil group of F , then there exists a lifting

WF

ǦX(C) Ǧ(C)

∃

such that the lift corresponds under Local Langlands to σ. (The conjecture is formulated
more precisely using Vogan’s Arthur packets, but I omit these subtleties.)

(ii) there should exist a ǦX-representation

ρX : ǦX(C)→ GL(VX)

such that |PX |2π = L(σ, ρX , s0) for a special value s0 [up to known constants and zeta
factors].

In this talk I will focus more on (ii) and soon we will just assume ǦX = Ǧ to avoid subtleties
related to (i). But before that let me mention that the map ǦX → Ǧ has been constructed (see
below for history) so it is a known entity, whereas the representation ρX is very mysterious and
a priori the ρX are only determined on the basis of examples from numerical calculations. One
of the products of our work is that we give a formula for what ρX has to be, solely in terms of
the prime B-divisors of X.

1I am taking liberties in the statement, there are extra assumptions and nothing should be taken literally.
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1.3. History of ǦX . This is largely for educational purposes as I will later assume ǦX = Ǧ,
but let me describe the history behind the spherical dual group. The goal is to construct a map

ǦX → Ǧ

with finite kernel.

• the dual maximal torus ŤX is easy to define
• the Weyl group WX of ǦX and the root system of spherical roots

– was known for symmetric varieties very early on (Cartan ’27); here WX is called
the little Weyl group, spherical root system is the restricted root system;

– for a spherical variety, Brion (’90) showed existence of WX as a finite reflection
group of a fundamental domain using previous work of Luna–Vust (’83). He also
showed existence of a root system of spherical roots.

– Knop (’90, ’93, ’94) then defined the Weyl group for any irreducible G-variety in
several different ways and showed they were all equivalent (and also equivalent to
Brion’s definition). He used the moment map T ∗X → g∗ and separately, invariant
differential operators D(X)G.

• Independent from work of Brion, Knop, Gaitsgory–Nadler [GN] define a subgroup
ǦGNX ⊂ Ǧ using Tannakian formalism, but they don’t show its Weyl group coincides
with Brion’s
• You might think that if you have WX and a root system, you already have ǦX , but

there is an issue of integrality: you need the coroots to lie in the lattice corresponding
to ŤX . Sakellaridis–Venkatesh [SV] suggested a way to normalize the spherical roots
such that now they can define ǦX combinatorially. But the story is not over: you really
want a distinguished map ǦX → Ǧ (conjecturally with image ǦGNX ). They construct
this map under assumptions about [GN] (which are still unchecked today).
• Knop–Schalke [KS]: define the map ǦX → Ǧ combinatorially unconditionally.

1.4. For the purposes of this talk, you can pick an example out of this table:
In Table 1, T ∗V ′ = V ′ ⊕ V ′∗. The names signify who discovered the corresponding integrals

Table 1. Langlands dual data

X 	 G ǦX VX

Usual Langlands Group G′ 	 G′ ×G′ = G Ǧ′ ǧ′

Whittaker normalization (N,ψ)\G Ǧ pt

Tate’s thesis A1 	 Gm Gm T ∗C
Hecke Gm\PGL2 Ǧ = SL2 T ∗std

Rankin–Selberg,
Jacquet–Piatetski-
Shapiro–Shalika

GLn × An 	 GLn × GLn,
H = diagonal mirabolic

Ǧ T ∗(std⊗ std)

loc cit. GLn\GLn+1 ×GLn Ǧ T ∗(std⊗ std)

Gan–Gross–Prasad SO2n\SO2n+1 × SO2n Ǧ = SO2n×Sp2n std⊗ std

Jacquet, Ichino PGLdiag
2 \PGL×3

2 Ǧ = SL×3
2 std⊗ std⊗ std

Example 2 Ǧ = GL×n2 ×Gm T ∗(std⊗n2 ⊗ std1)
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and determined what VX should be. Of course in these cases the named people have discovered
far more about each case than what I will discuss today.

But now you can use spherical varieties to try to find new examples people haven’t discovered
before:

Example 2 ([Sak12, §4.5]). A new family of examples is provided by Sakellaridis generalizing
the Rankin–Selberg convolution to an integral representation of the n-fold tensor product L-
function for GL2. Let G = GL×n2 ×Gm acting on X• = H\G where

H =

{(
a x1

1

)
×
(
a x2

1

)
× · · · ×

(
a xn

1

)
× a

∣∣∣∣x1 + x2 + · · ·+ xn = 0

}
.

Let X be the affine closure of X•. In this case ǦX = Ǧ = GL×n2 × Gm, and it will follow
from our work that VX = T ∗(std⊗n2 ⊗ std1) (and there is an integral representation of the
corresponding L-function).

For n = 3 this coincides with a construction of Garrett, worked on by many people.

The slogan is if we want to find more unknown examples, we need to look at singular X,
necessarily not equal to H\G.

Theorem 3 ([Lun73], [Ric77]). The variety H\G is affine if and only if H is reductive

1.5. Assumption ǦX = Ǧ. Note that in Table 1, in all but the first row ǦX = Ǧ. This is the
situation that I will restrict to today. The point of the talk will be that for our results, this
assumption allows us to reduce everything to the Hecke case of Gm\PGL2.

So far I haven’t told you anything about ǦX besides some history, so how are you supposed
to interpret this assumption?

Assumption 1. For this talk, assume ǦX = Ǧ and X has no type N roots2.
This is equivalent to the following (after base change to k):

• X has an open B-orbit X◦ acted on simply transitively by B (so after choose a base
point x0 ∈ X◦ we get X◦ ∼= B),

• X◦Pα/R(Pα) ∼= Gm\PGL2 for every simple α. Here Pα ⊃ B is the standard sub-
minimal parabolic corresponding to α.

So this says X has open subvarieties which “look” like the Hecke case, and the complement
of these opens are certain B-divisors.

2. Function-theoretic results

2.1. Sakellaridis–Venkatesh á la Bernstein. The most conceptually satisfactory way to
explain how to get an L-function from X is through a lengthy discussion on Plancherel decom-
position for L2(X(F )). However this takes a long time, so for brevity I will go with the fastest
way instead. We refer to [SW, Introduction] for details.

Sakellaridis–Venkatesh [SV] developed the theory of Bernstein [Ber] of asymptotics to study
Plancherel decomposition. Skipping all intermediate steps, they show that a key computation
for studying the unramified spectrum is to consider the operator

π! : C∞c (X(F ))G(O) → C∞(N(F )\G(F ))G(O)

2‘N’ is for normalizer. We want to avoid examples like On\GLn, which Jacquet, Mao have shown has some
metaplectic behavior which is not expected to be related to L-functions
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defined by

π!Φ(g) :=

∫
N(F )

Φ(x0ng)dn, g ∈ G(F )

where x0 ∈ X◦(Fq) is a fixed base point in the open B-orbit. This is an integral over generic
horocycles, so we call π! the X-Radon transform.

Note that π!Φ is a function on N(F )\G(F )/G(O) = T (F )/T (O) = Λ̌.

For those more familiar with harmonic analysis, you can believe that the X-Radon transform
is related to finding formulas for spherical functions (i.e., unramified Hecke eigenfunctions) on
X(F ). And as already mentioned, Bernstein asymptotics relates the Radon transform to the
unramified Plancherel measure of X(F ).

2.2. Conjecture on Radon transform. The conjecture can be made for any ǦX but it is
more awkward to state, so for precision I will only state the case ǦX = Ǧ:

Conjecture 2. Assume ǦX = Ǧ and X has no type N roots. Let Φ0 denote the IC function of
X(O). Then there exists a symplectic VX ∈ Rep(Ǧ) with a Ť polarization VX = V +

X ⊕ (V +
X )∗

such that

(2.1) π!Φ0 =

∏
α̌∈Φ̌+

G
(1− q−1eα̌)∏

λ̌∈wt(V +
X )(1− q−

1
2 eλ̌)

∈ Fn(Λ̌)

where eλ̌ is the indicator function of λ̌ and eλ̌eµ̌ = eλ̌+µ̌

The fact that VX is supposed to be symplectic is special to the ǦX = Ǧ case.
The Euler product on the right should be understood via a power series expansion:

1

1− q− 1
2 eλ̌

=
∑
n≥0

(q−
1
2 eλ̌)n.

What (2.1) is really saying is that π!Φ0 is supposed to give “half” of an L-function. More
specifically, you can take the Mellin transform of any function on T (F )/T (O) to get a function

on Ť (C) (ignoring convergence issues). In practice, this means for χ ∈ Ť (C), replace eλ̌ in the
above formula by λ̌(χ), where λ̌ is considered as a weight of Ť (C). Then the Mellin transform
of π!Φ0 is

π̂!Φ0(χ) =
L(χ, V +

X ,
1
2 )

L(χ, ň, 1)
, this is “half” of

L(χ, VX ,
1
2 )

L(χ, ǧ/̌t, 1)

Note that L(χ, ť, 1) is a product of zeta functions which do not depend on χ, so they are
normalized out.

The special value at the central value 1/2 is specific to the ǦX = Ǧ case. In some sense, this
makes the ǦX = Ǧ case the most interesting to study.

2.3. Previous work. When X = H\G and H is reductive (equivalent to H\G being affine),
Sakellaridis ([Sak08, Sak13]) proved the above conjecture (without restriction on ǦX) using
function-theoretic techniques. So if you’re only interested in these cases at the function-theoretic
level, we have nothing new to offer (although we give a different geometric proof in this case
as well). On the other hand, he does not consider affine embeddings X ) H\G, which we do
under the ǦX = Ǧ assumption. In this case X is smooth so Φ0 is just the indicator function
of X(O).

However when X is singular, geometric considerations must be made to understand Φ0 since
IC is in the very definition.
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Theorem 4. Explicit formula for (2.1) has been established using geometric techniques in the
following cases:

• Braverman–Finkelberg–Gaitsgory–Mirković [BFGM]:

– X = N−\G, ǦX = Ť , VX = ǧ∗/̌t∗. Note that Ǧ ×ǦX VX = T ∗(Ǧ/Ť ), which has
some global incarnation as geometric Eisenstein series

• Bouthier–Ngô–Sakellaridis [BNS]:
– X toric variety, G = T , ǦX = Ť , weights of VX correspond to generators of the

monoid equal to Hommonoid(Ga, X).
– X ⊃ G′ is an L-monoid, so here the group is G = G′ × G′, ǦX = Ǧ′, and

VX = ǧ′ ⊕ T ∗V λ̌ where λ̌ is the coweight appearing in the definition of an L-
monoid.

In these geometric cases ǦX 6= Ǧ. Our result is:

Theorem 5 (Sakellaridis–W). Assume X affine spherical, ǦX = Ǧ and X has no type N
roots3. Then

π!ΦICX(O)
=

∏
α̌∈Φ̌+

G
(1− q−1eα̌)∏

λ̌∈wt(V +
X )(1− q−

1
2 eλ̌)

for some V +
X ∈ Rep(Ť ) such that:

(i) V ′X := V +
X ⊕ (V +

X )∗ has action of (SL2)α for every simple root α

• We do not check the Weyl/Serre relations, which would imply V ′X is a Ǧ-representation.

(ii) Assuming V ′X satisfies Weyl/Serre relations (so it is a Ǧ-representation), we determine
its highest weights with multiplicities (in terms of prime B-divisors of X).

Remarks: (ii) gives a recipe for the previously mysterious conjectural VX in terms of X.
Namely, set VX equal to the direct sum of the highest weight representations corresponding to
the highest weights from (ii), which can be defined just using data from X. We are saying this
is what VX has to be for Conjecture 2 to be true.

It is a consequence of (i) that if this newly defined VX is a minuscule representation, then
we must have VX = V ′X , so we have proved Conjecture 2 in this case.

We also showed that:

Proposition 1. If X = H\G with H reductive, then VX is minuscule.

This explains why mostly minuscule cases have appeared so far.

2.3.1. We can reduce the checking of Weyl relations (which imply Serre relations for finite

dimensional representations) to the cases where X = H\G and G has semisimple rank 2. Now
if one looks at Wasserman’s tables of rank 2 spherical varieties, there are only around 10 that
satisfy ǦX = Ǧ (the only exceptional group is G2, of which there are 3 cases). This didn’t seem
easy to check, but it also does not seem impossible.

2.3.2. There is some hope that our techniques will generalize to any X (no restriction on ǦX)
by combining the knowledge from [BFGM, BNS].

3. Geometry

From now on I will base change to k while keeping the same notation. (One can also take
k = C now.) Let XO denote the formal arc space of X, so XO(k) = X(k[[t]]).

Recall we will assume Assumption 1 throughout. So we fix a base point x0 ∈ X◦(k) and
identify X◦ ∼= B. Let H ⊂ G be the stabilizer of x0, so HB ⊂ G is open dense.

3Technically we need some further assumptions over Fq to ensure X behaves like it does in characteristic 0
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3.0.1. First problem: XO is an affine scheme of infinite type, and there is currently no theory
of perverse sheaves on such spaces (although at least in our setup it’s expected there should be
such a theory). Nevertheless, Bouthier–Ngo–Sakellaridis [BNS] show that the IC function of
XO, which should equal the trace of geometric Frobenius of ICXO

, is well-defined. They use a
theorem of Grinberg–Kazhdan (characteristic 0) and Drinfeld (any characteristic):

Theorem 6 (Grinberg–Kazhdan, Drinfeld). Let γ ∈ X(k[[t]]) be an arc that generically lands
in the smooth locus of X. Then there exists a finite type scheme Y and y ∈ Y (k) such that
there is an isomorphism of formal neighborhoods

(X̂O)γ ∼= Ŷy × Â∞.

I.e., near generic arcs XO has finite-type singularities.
We call Y as above a model of XO.

3.1. Zastava space. We will use the fact that Drinfeld’s proof [Dri18] of this theorem gives
us explicit models for XO. This phenomenon was first used by Finkelberg–Mirković to study
X = G/N (ǦX = Ť ). The two models are:

(i) the Zastava space4 YX = Mapsgen(C,X/B ⊃ X◦/B)
(ii) the Artin stack MX = Mapsgen(C,X/G ⊃ X•/G).

I will downplay the role of MX in this talk, but it is very important for modeling the Hecke
action of G(F ) on X•(F ).

3.1.1. Our assumptions imply that the stack X/B contains X◦/B = pt as an open substack.
A point y ∈ YX(k) is a map C → X/B generically landing in pt. So by Beauville–Laszlo’s

theorem

y ↔


finite set {vi}i∈I ⊂ C(k),

ŷi ∈ (X(Ovi) ∩X◦(Fvi))/B(Ovi),

y(C − {vi}) = pt


Recall we are using x0 ∈ X◦(k) to identify X◦ ∼= B. Then

X◦(Fvi)/B(Ovi)
∼= BFvi

/BOvi
(k) = GrB,vi(k)

Now recall that GrB has the same connected components as GrT , which are indexed by the
coweight lattice Λ̌. So to each ŷi is attached a coweight λ̌i ∈ Λ̌.

From this we see that Y lives over a space{
Λ̌-valued divisors :

∑
i∈I

λ̌i · vi, vi ∈ C(k) distinct

}
If λ̌i could be any coweight then we would need something fancy like the Ran space to make
sense of the above. However, since ŷi ∈ X(Ovi) is an arc, all the λ̌i belong to a strictly convex
cone. So there is a sense of “positive” grading. More specifically,

π : Y→ A = Maps(C,X//N/T ).

Let me assume for ultimate simplicity that X//N = Ar ⊃ Grm = T with a corresponding basis
ν̌1, . . . , ν̌r ∈ Λ̌ for the cocharacters whose limit as t→ 0 lands in X//N . Then

A = Maps(C,Ar/Grm) = (SymC)r =
⊔

(ni)∈Nr

C(n1) × · · · × C(nr) =:
⊔

An1ν̌1+···+nr ν̌r

is the scheme of r divisors on C. Let the preimage of Aλ̌ be Yλ̌.

4Zastava is Croatian for flag
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Then Yλ̌ is a finite type scheme.

3.2. Graded factorization. Notice that the fiber over λ̌1 · v1 + λ̌2 · v2 ∈ Aλ̌1+λ̌2 where v1, v2

are distinct only depends on the independent fibers over λ̌1 · v1 and λ̌2 · v2. This is called a
graded factorization property of (the collection of components of) Y.

Aside: in the situation above the Yλ̌ are indeed irreducible components, but we could only
prove this in a very roundabout way.

3.3. Upshot: central fibers. The graded factorization property essentially says the fiber of
π over λ̌ · v at a single point v ∈ C(k) is the most important. This fiber is isomorphic to

Yλ̌ := Grλ̌B,v ×
XF/BO

XO/BO,

where BF → XF is the action on x0. This fiber doesn’t depend on v. Observe that

tr(Fr, π!ICY|∗λ̌·v) = tr(Fr, H∗c (Yλ̌, ICY)) =

∫
N(F )

Φ0(x0nt
λ̌) = π!Φ0(tλ̌)

is the Radon transform we wanted to calculate back in (2.1).

Example 3. LetX = Gm\GL2 where Gm = ( ∗ 1 ). Then Y = Mapsgen(C,X/B) = Mapsgen(C,Gm\P1)
parametrizes

A,L ∈ Pic,L
(x,y)−→ A⊕ O.

Generically landing in X◦ means x, y do not simultaneously vanish after taking fiber at any
point. What this amounts to is two divisors with disjoint support:

Y = SymC×̊SymC

Meanwhile X//N = A2 with basis ε̌1 = (1, 0),−ε̌2 = (0,−1). So

π : Y = SymC×̊SymC → SymC × SymC = A

is an open embedding. The preimage of (n1ε̌1 − n2ε̌2) · v is empty if n1, n2 are both nonzero,
and a point otherwise. So we see

π!Φ0 = e0 +
∑
n≥1

(q−n/2enε̌1 + q−n/2e−nε̌2) =
1− q−1eα̌

(1− q−1/2eε̌1)(1− q−1/2e−ε̌2)

since α̌ = ε̌1 − ε̌2. Note that |π̂!Φ0(χ)|2 = L(χ,std⊕std∗,1/2)
L(χ,ǧ/ť,1)

.

As we see above, π is not proper, but we can compactify it to:

Y = Maps(C,X ×G/N/(Gdiag × T ))

and we still have π̄ : Y→ A. Let Y
λ̌

be preimage of Aλ̌. And Y still has the graded factorization
property.

Theorem 7 (Sakellaridis–W). Under our assumptions on X, the map π̄ : Y → A is stratified
semi-small.

We emphasize that this is extremely special to the ǦX = Ǧ case! The statement is definitely
false for example when X = N−\G.

Toy situation: if Y were smooth, then semi-smallness for π̄ amounts to (because of factoriza-
tion):

(3.1) dimYλ̌ ≤ crit(λ̌)
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The general situation is more complicated because of strata, but believe that we have some
formula for crit(λ̌).

3.3.1. A fact that is presumably known to experts but not often stated is that in the above
situation where you have a semi-small map, the decomposition theorem together with the graded
factorization property immediately tell you that

tr(Fr, (π̄!ICY)|∗?·v) =
1∏

λ̌∈B+(1− q− 1
2 eλ̌)

has the desired Euler product format. Here B+ corresponds to the relevant strata supported

at a single point. More specifically, B+ = the irreducible components of Yλ̌ of dim = crit(λ̌)
as λ̌ varies. (This is an oversimplification but it’s almost true.)

3.4. Crystals. To reconnect with Conjecture 2, define V +
X to be the Ť -representation with

basis in bijection with B+. The crux of Conjecture 2 is getting half of a Ǧ-representation.
Since we know this is what we want, formally set B = B+ t (B+)∗, where (B+)∗ is defined

to be in bijection with B+ but the weights are replaced by their negatives. In this way, (B+)∗

naturally corresponds to a basis of (V +
X )∗.

Theorem 8 (Sakellaridis–W). B has the structure of a (Kashiwara) crystal, i.e., a graph with

weighted vertices and edges corresponding to lowering operators f̃α.

We use this abstract combinatorial notion of crystal as a bridge to hopefully getting a crystal
basis. A crystal basis is the (Lusztig) canonical basis5 at q = 0 of an integrable Uq(ǧ)-module

in category O. So the crystal basis is a way for us to access a Ǧ-representation.

f.d. Ǧ-representation  crystal basis ∈ {crystals}

Conjecture 3. B is the crystal basis for a finite dimensional Ǧ-representation VX .

Conjecture 3 implies Conjecture 2 (by construction, B corresponds to a basis of V ′X).

Conjecture 2 resembles geometric constructions of crystal bases by Lusztig, Braverman–
Gaitsgory [BG01], and Kamnitzer. But in their situations they are concerned with constructing
crystal bases for all representations, whereas here we arrive at a very specific one. I am
interested in possible connections in this theory.

3.5. Further details. We can identify (Grλ̌B)red = NFt
λ̌GO/GO =: Sλ̌ ⊂ GrG, i.e., a semi-

infinite orbit. Let S
λ̌

denote its closure in GrG. Then the fiber of Y→ A over λ̌ · v is

S
λ̌ ×
XF /GO

XO/GO

Proposition 2 ([MV]). The boundary S
λ̌

=
⋃
µ̌≤λ̌ S

µ̌ is given by a hyperplane section in GrG.

The lowering operator we define on B is roughly given by

Yλ̌  Yλ̌ ∩ Sλ̌−α̌ ⊂ Yλ̌−α̌.
This does not quite uniquely specify how to lower an irreducible component to another irre-
ducible component, but a reduction to considering affine embeddings of Gm\GL2×(torus) gives

us enough information to pick out the correct irreducible component in Yλ̌−α̌.

5Canonical bases were first discovered by Lusztig ’90 in types A,D,E, and subsequently by Kashiwara using
different methods. The crystal basis at q = 0 in types A,B,C,D was discovered independently by Kashiwara at

around the same time in ’90.
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