Spherical varieties, L-functions, and crystal bases

Jonathan Wang (joint w/ Yiannis Sakellaridis)

MIT

October 30, 2020

Notes available at: http:

//jonathanpwang.com/notes/sphL_RT_slides_handout.pdf

Outline

1 What is a spherical variety?

- 2 Local geometric duality
- 3 Function-theoretic results
 - 4 Geometry

• G connected split reductive group $/\mathbb{F}_q$

Definition

A *G*-variety $X_{/\mathbb{F}_q}$ is called spherical if X_k is a normal variety with finitely many B_k orbits.

Finiteness condition gives good combinatorics (spherical root datum, rational cones, fans)

Examples:

- Toric varieties G = T
- Symmetric spaces $K \setminus G$
 - Group $X = G' \circlearrowleft G' \times G' = G$

Conjecture (Sakellaridis, Sakellaridis–Venkatesh)

Representation theory (harmonic analysis) of functions on an affine spherical variety X, in particular involving the "IC function" of X(O), is related to an L-function

 $L(s,\pi,\rho_X)$

where $\rho_X : \check{G}_X \to GL(V_X)$ is a \check{G}_X -representation of a possibly different group \check{G}_X

There is a map $\check{G}_X \rightarrow \check{G}$, constructed (in most cases) by Gaitsgory–Nadler, Sakellaridis–Venkatesh, Knop–Schalke.

Relation to physics

- $T^*X \to \mathfrak{g}^*$ is a Hamiltonian *G*-space
- (Gaitto–Witten) Hamiltonian G-space → boundary theory for super Yang–Mills TFT for G
- S-duality for boundary theories predicts:

$$\fbox{G} \circlearrowright T^*X \to \mathfrak{g}^* \longleftrightarrow \fbox{\check{G}} \circlearrowright M^{\vee} \to \check{\mathfrak{g}}^*$$

Prediction (Ben-Zvi–Sakellaridis–Venkatesh)

When X is a spherical variety, there exists $V_X \in \operatorname{Rep}(\check{G}_X)$ such that

$$M^{\vee} = V_X \times \check{G}_X \check{G} := (V_X \times \check{G}) / \check{G}_X$$

is a Hamiltonian Ğ-space.

	X 🔿 G	Ğ _X	V_X
Usual Langlands	$G' \circlearrowleft G' \times G'$	Ğ′	ğ′
Whittaker normal- ization	$(N,\psi)ackslash G$	Ğ	0
Hecke	$\mathbb{G}_m \setminus PGL_2$	$\check{G} = SL_2$	T^* std
Rankin–Selberg, Jacquet–Piatetski- Shapiro–Shalika	$\overline{H\backslash GL_n \times GL_n} = GL_n \times \mathbb{A}^n$	Ğ	T*(std⊗std)
Gan–Gross–Prasad	$SO_{2n} \setminus SO_{2n+1} \times SO_{2n}$	$\check{G} = \mathrm{SO}_{2n} \times \mathrm{Sp}_{2n}$	$std\otimesstd$

Local geometric duality

- $k = \overline{\mathbb{F}}_q$
- X_F(k) = X(k((t))) formal loop space of X this is an ind-scheme
- Let X^{\bullet} denote the open *G*-orbit of *X*.
- $X_F^{\bullet} = X_F (X X^{\bullet})_F$

We quantize the previous duality:

Conjecture (Ben-Zvi–Sakellaridis–Venkatesh)

There exists a monoidal equivalence

$$D^b_{G_O}(X^{ullet}_F)\cong D^b_{\mathsf{perf}}(\mathbb{V}_X/\check{G}_X)$$

where \mathbb{V}_X is a \mathbb{Z} -graded, super \check{G}_X -representation.

This is a generalization of derived Satake equivalence $(X = G \bigcirc G \times G)$

$$D^b_{G_O}(G_F/G_O) \cong D^b_{\mathsf{perf}}(\check{\mathfrak{g}}^*[2]/\check{G})$$

For this talk, assume $\check{G}_X = \check{G}$ (and X has no type N roots). ['N' is for normalizer]

Equivalent to:

(Base change to k)

- X has open B-orbit $X^{\circ} \cong B$
- $X^{\circ}P_{\alpha}/\mathcal{R}(P_{\alpha}) \cong \mathbb{G}_m \setminus \mathsf{PGL}_2$ for every simple $\alpha, P_{\alpha} \supset B$

Plancherel formula

By functions-sheaves analogy, previous conjecture can be viewed as geometric realization of Plancherel formula for $L^2(X^{\bullet}(F))$:

$$L^{2}(X^{\bullet}(F))^{G(O)} = \int_{\chi \in \widehat{T}_{X}/W_{X}} \pi_{\chi}^{G(O)} d\chi$$

where \widehat{T}_X is maximal compact in \check{T}_X and π_χ is principal series.

In particular, we have a spectral decomposition

$$\|IC_{X(O)}\|^{2} = \int_{\widehat{T}_{X}/W_{X}} \|IC_{X(O)}\|_{\chi}^{2} d\chi$$

and conjecture predicts that

$$\|IC_{X(O)}\|_{\chi}^{2} = \frac{L(s_{0}, \pi_{\chi}, V_{X})}{L(1, \pi_{\chi}, \check{\mathfrak{g}}_{X})}$$

up to known constant and zeta factors.

Theorem (Sakellaridis–Venkatesh á la Bernstein)

There exists a G(F)-equivariant map

Asymp :
$$C^{\infty}(X^{\bullet}(F)) \rightarrow C^{\infty}(X_0^{\bullet}(F))$$

where X_0^{\bullet} "looks like" $N^- \setminus G$, such that

$$\|\Phi\|_{\chi}^2 = \|\mathsf{Asymp}(\Phi)\|_{\chi}^2.$$

So function-theoretically, the problem amounts to computing $Asymp(IC_{X(O)})$.

Theorem (Sakellaridis–W)

Assume that the open B-orbit $X^{\circ} = B$. Then, Asymp is realized via the functions-sheaves dictionary as a nearby cycles functor on finite type models of $X_{\mathsf{F}}^{\bullet} \rightsquigarrow (X_{\mathsf{O}}^{\bullet})_{\mathsf{F}}$.

In this situation, $X_0^{ullet} = N^- ackslash G$ so

$$\operatorname{Asymp}(IC_{X(O)}) \in C^{\infty}(N^{-}(F) \setminus G(F) / G(O)) = \operatorname{Fn}(\check{\Lambda}).$$

Conjecture 1 (Sakellaridis–Venkatesh)

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots.

 There exists M[∨] = V_X a symplectic Ğ-representation with Hamiltonian structure, and V_X = V_X^{odd}[1].

There exists a \check{T} polarization $V_X = V_X^+ \oplus (V_X^+)^*$ such that

$$\mathsf{Asymp}(\mathit{IC}_{X(O)}) = \frac{\prod_{\check{\alpha} \in \check{\Phi}_G^+} (1 - e^{\check{\alpha}})}{\prod_{\check{\lambda} \in \mathsf{wt}(V_X^+)} (1 - q^{-\frac{1}{2}} e^{\check{\lambda}})} \in \mathsf{Fn}(\check{\Lambda})$$

where $e^{\check{\lambda}}$ is the indicator function of $\check{\lambda}$, $e^{\check{\lambda}}e^{\check{\mu}}=e^{\check{\lambda}+\check{\mu}}$

Mellin transform (= spectral decomposition) gives

$$(\mathsf{Asymp}(\mathit{IC}_{X(\mathcal{O})})_{\chi} = \frac{\mathit{L}(\frac{1}{2}, \chi, V_X^+)}{\mathit{L}(0, \chi, \check{\mathfrak{n}})}, \text{ this is "half" of } \frac{\mathit{L}(\frac{1}{2}, \chi, V_X)}{\mathit{L}(0, \chi, \check{\mathfrak{g}}/\check{\mathfrak{t}})}$$

Theorem (Sakellaridis–W)

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots. Then the Mellin transform

$$(\mathsf{Asymp}(\mathsf{IC}_{X(\mathcal{O})}))_{\chi} = \frac{L(\frac{1}{2}, \chi, V_X^+)}{L(0, \chi, \mathfrak{n})}$$

for some $V_X^+ \in \mathsf{Rep}(\check{T})$ such that:

V'_X := V⁺_X ⊕ (V⁺_X)* has action of (SL₂)_α for every simple root α
We do not check Serre relations

Assuming V'_X satisfies Serre relations (so it is a Ğ-representation), we determine its highest weights with multiplicities (in terms of X)

- (2) gives recipe for conjectural (ρ_X, V_X) in terms of X
- If V_X is minuscule, then $V_X = V'_X$.
- We show *H* reductive implies minuscule assumption.

Asymp $(IC_{X(O)})$ was previously considered by:

- Sakellaridis ('08, '13):
 - $X = H \setminus G$ and H is reductive (iff $H \setminus G$ is affine), no assumption on \check{G}_X
 - doesn't consider $X \supseteq H \setminus G$
- Braverman–Finkelberg–Gaitsgory–Mirković [BFGM] '02:

•
$$X = \overline{N^- \setminus G}$$
, $\check{G}_X = \check{T}$, $V_X = \check{\mathfrak{g}}^* / \check{\mathfrak{t}}^*$, $\check{G} \times \check{G}_X V_X = T^* (\check{G} / \check{T})$

• S. Schieder '16:

• X = G' group case, G = G' imes G', $V_X = \check{\mathfrak{g}}'$

- Bouthier-Ngô-Sakellaridis [BNS] '16:
 - $X \supset G'$ is L-monoid, $G = G' \times G'$, $\check{G}_X = \check{G}'$, $V_X = \check{\mathfrak{g}}' \oplus T^* V^{\check{\lambda}}$

• J. Campbell '17:

• $X = (N, \psi) \backslash G$ Whittaker

- Base change to $k = \overline{\mathbb{F}}_q$ (or $k = \mathbb{C}$)
- $X_O(k) = X(k\llbracket t \rrbracket)$
- Problem: X_O is an infinite type scheme
- Bouthier–Ngô–Sakellaridis: IC function still makes sense by Grinberg–Kazhdan theorem – use finite type schemes to model X_O

Zastava space

Drinfeld's proof of Grinberg–Kazhdan theorem gives an explicit finite type model for X_O :

Definition

Let $C = \mathbb{A}^1$ the affine line. Define

$$\mathcal{Y} = \mathsf{Maps}_{\mathsf{gen}}(C, X/B \supset X^\circ/B)$$

Following Finkelberg–Mirković, we call this the **Zastava space** of X.

Fact: \mathcal{Y} is an infinite disjoint union of finite type schemes.

 \mathcal{A} \cap {Å-valued divisors on *C*}

 π

Define the **central fiber** $\mathbb{Y}^{\check{\lambda}} = \pi^{-1}(\check{\lambda} \cdot v)$ for a single point $v \in C(k)$.

Graded factorization property

The fiber $\pi^{-1}(\check{\lambda}_1 v_1 + \check{\lambda}_2 v_2)$ for distinct v_1, v_2 is isomorphic to $\mathbb{Y}^{\check{\lambda}_1} \times \mathbb{Y}^{\check{\lambda}_2}$.

Upshot

By Braden's contraction principle, computation of Asymp / nearby cycles amounts to computing $\pi_! IC_{\vartheta}.$

Semi-small map

Can compactify
$$\pi$$
 to proper map $\overline{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}$.

Theorem (Sakellaridis–W)

Under previous assumptions, $\bar{\pi}: \overline{\mathfrak{Y}} \to \mathcal{A}$ is stratified semi-small. In particular, $\bar{\pi}_1 I C_{\overline{\mathfrak{Y}}}$ is perverse.

If $\overline{\mathcal{Y}}$ is smooth, then semi-smallness amounts to the inequality

$$\mathsf{dim}\,\overline{\mathbb{Y}}^{\check{\lambda}} \leq \mathsf{crit}(\check{\lambda})$$

Decomposition theorem + factorization property imply

Euler product

$$tr(\mathsf{Fr},(\bar{\pi}_!\mathsf{IC}_{\overline{\mathcal{Y}}})|_{?\cdot v}^*) = \frac{1}{\prod_{\check{\lambda}\in\mathfrak{B}^+}(1-q^{-\frac{1}{2}}e^{\check{\lambda}})}$$

 $\mathfrak{B}^+ = \mathsf{irred.}$ components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of dim $= \mathsf{crit}(\check{\lambda})$ as $\check{\lambda}$ varies

- $\mathfrak{B}^+ = \mathsf{irred.}$ components of $\overline{\mathbb{Y}}^{\lambda}$ of dim = $\mathsf{crit}(\check{\lambda})$ as $\check{\lambda}$ varies
- Define V_X^+ to have basis \mathfrak{B}^+
- Formally set $\mathfrak{B} = \mathfrak{B}^+ \sqcup (\mathfrak{B}^+)^*$, so $(\mathfrak{B}^+)^*$ is a basis of $(V_X^+)^*$

Theorem (Sakellaridis–W)

 \mathfrak{B} has the structure of a (Kashiwara) crystal, i.e., graph with weighted vertices and edges \leftrightarrow raising/lowering operators $\tilde{e}_{\alpha}, \tilde{f}_{\alpha}$

Crystal basis is the (Lusztig) canonical basis at q = 0 of a f.d. $U_q(\tilde{g})$ -module.

f.d. Č-representation \rightsquigarrow crystal basis \in {crystals}

Conjecture 2

 \mathfrak{B} is the crystal basis for a finite dimensional \check{G} -representation V_X .

- Conjecture 2 implies Conjecture 1 $(\mathfrak{B} \leftrightarrow V_X^+ \oplus (V_X^+)^*)$.
- Conjecture 2 resembles geometric constructions of crystal bases by Braverman–Gaitsgory using Mirković–Vilonen cycles
- $\mathbb{Y}^{\check{\lambda}}, \overline{\mathbb{Y}}^{\check{\lambda}} \subset \mathrm{Gr}_{G}$
- $\mathbb{Y}^{\check{\lambda},0} = H_F G_O \cap N_F t^{\check{\lambda}} G_O \subset \operatorname{Gr}_G$