Local *L*-values and geometric harmonic analysis on spherical varieties

Jonathan Wang (joint w/ Yiannis Sakellaridis)

MIT

Columbia Automorphic Forms and Arithmetic Seminar October 9, 2020 1 Integral representations of *L*-functions

- 2 What is a spherical variety?
- 3 Function-theoretic results

G connected split reductive group $/\mathbb{F}_q$

Integral representations of L-functions

- C smooth, projective, geometrically connected curve over \mathbb{F}_q
- $\mathbf{k} = \mathbb{F}_q(C)$ global function field
- $[G] = G(\Bbbk) \setminus G(\mathbb{A})$

Automorphic period integral

For a "nice" reductive subgroup $H \subset G$, the period integral

$$\mathcal{P}_{H}(f) := \int_{[H]} f(h) dh$$

for f a cusp form on [G] is related to a special value of an L-function.

In these cases, $X = H \setminus G$ is a homogeneous affine spherical variety.

Theorem (Luna, Richardson)

 $H \setminus G$ is affine if and only if H is reductive.

Jonathan Wang (MIT)

By formal manipulation

$$\int_{[H]} f(h)dh = \int_{[G]} f(g) \cdot \sum_{\gamma \in (H \setminus G)(\Bbbk)} \mathbf{1}_{X(\mathbb{O})}(\gamma g)dg$$

where

Definition

$$\Sigma \Phi(g) := \sum_{\gamma \in \mathcal{H} ackslash G(\Bbbk)} \Phi(\gamma g) \, .$$

is the X-Poincaré series (alias X-Theta series) on [G]

$$X(\mathbb{A}) \leftarrow (H \backslash G)(\mathbb{k}) \stackrel{G(\mathbb{k})}{ imes} G(\mathbb{A})
ightarrow G(\mathbb{k}) ackslash G(\mathbb{A}) = [G]$$

General expectation (Sakellaridis)

- Start with $X^{\bullet} = H \setminus G$ "nice" (*H* not necessarily reductive)
- Choose an affine embedding $X^{\bullet} \hookrightarrow X$ (e.g., $X = \overline{X^{\bullet}}^{aff}$)
- Let $\Phi_0 = IC_{X(\mathbb{O})}$ denote the "IC function" of $X(\mathbb{O})$
- Define the X-Poincaré series

$$\Sigma \Phi_0(g) = \sum_{\gamma \in X^{ullet}(\Bbbk)} \Phi_0(\gamma g)$$

• Define the "X-period" by

$$\mathcal{P}_X(f) = \int_{[G]} f \cdot \Sigma \Phi_0, \qquad f \text{ cusp form on } [G]$$

Conjecture (Sakellaridis, 2009)

If f is unramified, then $|\mathcal{P}_X(f)|^2$ is "equal" to special value of L-function.

Jonathan Wang (MIT)

Example (Rankin–Selberg convolution)

For π_1, π_2 cuspidal GL₂(A)-representations,

$$L(rac{1}{2}+s,\pi_1 imes\pi_2, ext{std}\otimes ext{std})=\int_{Z(\mathbb{A})\setminus[\operatorname{GL}_2]}f_1(g)f_2(g)E^*(g,rac{1}{2}+s)dg$$

for unramified $f_1 \in \pi_1, f_2 \in \pi_2$, Whittaker normalized.

- Think of the normalized Eisenstein series $E^*(g,s) = \zeta(2s)E(g,s)$ as a distribution on $[GL_2 \times GL_2]$ via diagonal embedding.
- RHS is obtained by Mellin transform from

$$\mathcal{P}_X(f_1 imes f_2) = \int_{[G]} (f_1 imes f_2) \cdot \Sigma(\mathbf{1}_{X(\mathbb{O})})$$

- $G = \operatorname{GL}_2 \times \operatorname{GL}_2 \circlearrowright X = \mathbb{A}^2 \times \operatorname{GL}_2$
- open G-orbit $X^{ullet} = (\mathbb{A}^2 0) imes \mathsf{GL}_2 = H ackslash G$
- $H = \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix}$ mirabolic subgroup, diagonally embedded

In all the previous examples, X was smooth.

Example (Sakellaridis)

$$G = \operatorname{GL}_{2}^{\times n} \times \mathbb{G}_{m}, H = \left\{ \begin{pmatrix} a & x_{1} \\ & 1 \end{pmatrix} \times \begin{pmatrix} a & x_{2} \\ & 1 \end{pmatrix} \times \cdots \times \begin{pmatrix} a & x_{n} \\ & 1 \end{pmatrix} \times a \middle| x_{1} + \cdots + x_{n} = 0 \right\}$$

Let $X = \overline{H \setminus G}^{\operatorname{aff}}$ (usually singular).
• $n = 2$: Rankin–Selberg
• $n = 3$: \mathcal{P}_{X} is equivalent to the construction of Garrett

This is a case where the integral \mathcal{P}_X "unfolds" and our local results imply:

Theorem (Sakellaridis-W)

Over a global function field, the Mellin transform of $\mathcal{P}_X|_{\pi}$ gives an integral representation of $L(s, \pi, \operatorname{std}^{\otimes n} \otimes \operatorname{std}_1)$ for $\operatorname{Re}(s) \gg 0$ on cuspidal representations π under Whittaker normalization.

$$k = \overline{\mathbb{F}}_q$$

Definition

A *G*-variety $X_{/\mathbb{F}_q}$ is called spherical if X_k is normal and has an open dense orbit of $B_k \subset G_k$ after base change to k

Think of this as a finiteness condition (good combinatorics) Examples:

- Toric varieties G = T
- Symmetric spaces $K \setminus G$
 - Group $X = G' \circlearrowleft G' \times G' = G$
- Reductive monoid $X \supsetneq X^{\bullet} = G' \circlearrowleft G' \times G'$

Conjecture (Sakellaridis–Venkatesh)

For any affine spherical *G*-variety *X* (*), and a cuspidal $G(\mathbb{A})$ -representation $\pi \hookrightarrow \mathcal{A}_0(G)$,

• $\mathcal{P}_X|_{\pi} \neq 0$ implies that π lifts to $\sigma \hookrightarrow \mathcal{A}_0(G_X)$ by functoriality along a map $\check{G}_X(\mathbb{C}) \to \check{G}(\mathbb{C})$,

there should exist a Ğ_X-representation

$$\rho_X : \check{G}_X(\mathbb{C}) \to \mathrm{GL}(V_X)$$

such that $|\mathcal{P}_X|^2_{\pi} = (*) \frac{L(s_0, \sigma, \rho_X)}{L(1, \sigma, \text{Ad})}$ for a special value s_0 .

Goal: a map $\check{G}_X \to \check{G}$ with finite kernel

- \check{T}_X is easy to define
- Little Weyl group W_X and spherical root system
 - Symmetric variety: Cartan '27
 - Spherical variety: Brion '90, Knop '90, '93, '94
- \bullet Gaitsgory–Nadler '06: define subgroup $\check{G}_X^{GN}\subset\check{G}$ using Tannakian formalism
- Sakellaridis–Venkatesh '12: normalized root system, define $\check{G}_X \to \check{G}$ combinatorially with image \check{G}_X^{GN} under assumptions about GN
- Knop–Schalke '17: define $\check{G}_X \to \check{G}$ combinatorially unconditionally

	X 🔿 G	Ğ _X	V _X
Usual Langlands	$G' \circlearrowleft G' \times G'$	Ğ′	ğ′
Whittaker normal- ization	$(N,\psi)ackslash G$	Ğ	0
Hecke	$\mathbb{G}_m \setminus PGL_2$	$\check{G} = SL_2$	T^* std
Rankin–Selberg, Jacquet–Piatetski- Shapiro–Shalika	$\overline{H\backslash GL_n \times GL_n} = \\GL_n \times \mathbb{A}^n$	Ğ	T*(std⊗std)
Gan-Gross-Prasad	$SO_{2n} \setminus SO_{2n+1} \times SO_{2n}$	$\check{G} = \mathrm{SO}_{2n} \times \mathrm{Sp}_{2n}$	$std\otimesstd$

For this talk, assume $\check{G}_X = \check{G}$ (and X has no type N roots). ['N' is for normalizer]

Equivalent to:

(Base change to k)

- X has open B-orbit $X^{\circ} \cong B$
- $X^{\circ}P_{\alpha}/\mathcal{R}(P_{\alpha}) \cong \mathbb{G}_m \setminus \mathsf{PGL}_2$ for every simple $\alpha, P_{\alpha} \supset B$

Sakellaridis-Venkatesh á la Bernstein

Sakellaridis–Venkatesh: give generalized Ichino–Ikeda conjecture relating $|\mathcal{P}_X|^2$ to local harmonic analysis:

$$|\mathcal{P}_X(f)|^2 \stackrel{\text{l-l conjecture}}{=} \prod_v (\text{local computation})$$

 $F = \mathbb{F}_q((t)), \ O = \mathbb{F}_q[[t]]$

- spherical functions (unramified Hecke eigenfunction) on $X^{\bullet}(F)$
- unramified Plancherel measure on $X^{\bullet}(F)$

Fix $x_0 \in X^{\circ}(\mathbb{F}_q)$ in open *B*-orbit. For $\Phi \in C^{\infty}_c(X(F))^{G(O)}$, define the *X*-Radon transform

$$\pi_{!}\Phi(g) := \int_{N(F)} \Phi(x_0 ng) dn, \quad g \in G(F)$$

 $\pi_{!}\Phi$ is a function on $N(F)\backslash G(F)/G(O) = T(F)/T(O) = \check{\Lambda}$.

Conjecture 1 (Sakellaridis-Venkatesh)

Assume $\check{G}_X = \check{G}$ and X has no type N roots. There exists a symplectic $V_X \in \text{Rep}(\check{G})$ with a \check{T} polarization $V_X = V_X^+ \oplus (V_X^+)^*$ such that

$$\pi_! IC_{X(O)} = \frac{\prod_{\check{\alpha} \in \check{\Phi}_G^+} (1 - q^{-1} e^{\check{\alpha}})}{\prod_{\check{\lambda} \in \mathsf{wt}(V_X^+)} (1 - q^{-\frac{1}{2}} e^{\check{\lambda}})} \in \mathsf{Fn}(\check{\Lambda})$$

where $e^{\check{\lambda}}$ is the indicator function of $\check{\lambda}$, $e^{\check{\lambda}}e^{\check{\mu}}=e^{\check{\lambda}+\check{\mu}}$

Mellin transform of right hand side gives

$$\chi \in \check{\mathcal{T}}(\mathbb{C}) \mapsto \frac{L(\frac{1}{2}, \chi, V_X^+)}{L(1, \chi, \check{\mathfrak{n}})}, \text{ this is "half" of } \frac{L(\frac{1}{2}, \chi, V_X)}{L(1, \chi, \check{\mathfrak{g}}/\check{\mathfrak{t}})}$$

Conjecture 1 (possibly with $\check{G}_X \neq \check{G}$) was proved in the following cases:

- Sakellaridis ('08, '13):
 - $X = H \setminus G$ and H is reductive (iff $H \setminus G$ is affine), no assumption on \check{G}_X
 - doesn't consider $X \supseteq H \setminus G$
- Braverman–Finkelberg–Gaitsgory–Mirković [BFGM] '02:

•
$$X = \overline{N^- \setminus G}$$
, $\check{G}_X = \check{T}$, $V_X = \check{\mathfrak{n}}$

- Bouthier–Ngô–Sakellaridis [BNS] '16:
 - X toric variety, G = T, $\check{G}_X = \check{T}$, weights of V_X correspond to lattice generators of a cone
 - $X \supset G'$ is L-monoid, $G = G' \times G'$, $\check{G}_X = \check{G}'$, $V_X = \check{\mathfrak{g}}' \oplus T^* V^{\check{\lambda}}$

Theorem (Sakellaridis–W)

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots. Then

$$\pi_! IC_{X(O)} = \frac{\prod_{\check{\alpha} \in \check{\Phi}_G^+} (1 - q^{-1} e^{\check{\alpha}})}{\prod_{\check{\lambda} \in \mathsf{wt}(V_X^+)} (1 - q^{-\frac{1}{2}} e^{\check{\lambda}})}$$

for some $V_X^+ \in \operatorname{Rep}(\check{T})$ such that:

- (Functional equation) $V_X := V_X^+ \oplus (V_X^+)^*$ has action of $(SL_2)_{\alpha}$ for every simple root α
 - We do not check Serre relations

Assuming V_X satisfies Serre relations (so it is a Ğ-representation), we determine its highest weights with multiplicities (in terms of X)

(2) gives recipe for conjectural (ρ_X, V_X) in terms of only data from X
If V_X is minuscule, then Serre relations hold

Proposition

If $X = H \setminus G$ with H reductive, then V_X is minuscule.

Jonathan Wang (MIT)

- Base change to $k = \overline{\mathbb{F}}_q$ (or $k = \mathbb{C}$)
- $X_0(k) = X(k\llbracket t \rrbracket)$
- $\bullet\,$ Problem: $\boldsymbol{X_{O}}$ is an infinite type scheme
- Bouthier–Ngô–Sakellaridis: IC function still makes sense by Grinberg–Kazhdan theorem

Drinfeld's proof of Grinberg–Kazhdan theorem gives an explicit model for $\boldsymbol{X_0}$:

Definition

Let C be a smooth curve over k. Define

$$\mathcal{Y} = \{y : C \to X/B \text{ generically landing in } X^{\circ}/B = \mathsf{pt}\}$$

 $\subset \prod_{v \in |C|} X(O_v)/B(O_v)$

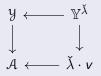
Following Finkelberg–Mirković, we call this the **Zastava space** of X.

Fact: \mathcal{Y} is an infinite disjoint union of finite type schemes.

$$\mathcal{Y} \xrightarrow{\pi} \mathcal{A} \subset {\check{\Lambda}}$$
-valued divisors on C

Definition

Define the **central fiber** $\mathbb{Y}^{\check{\lambda}} = \pi^{-1}(\check{\lambda} \cdot v)$ for a single point $v \in C(k)$.



Integrals ~> cohomology

$$\pi_! IC_{\mathbf{X}_{\mathbf{O}}}(t^{\check{\lambda}}) = tr(\mathsf{Fr}, (\pi_! \mathsf{IC}_{\mathfrak{Y}})|_{\check{\lambda} \cdot v}^*)$$

Can compactify π to a proper map $\overline{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}$.

Graded factorization property

The fiber $\overline{\pi}^{-1}(\check{\lambda}_1v_1 + \check{\lambda}_2v_2)$ for distinct v_1, v_2 is equal to $\overline{\mathbb{Y}}^{\check{\lambda}_1} \times \overline{\mathbb{Y}}^{\check{\lambda}_2}$.

Decomposition theorem + factorization property imply

Euler product

$$tr(\mathsf{Fr},(\bar{\pi}_!\mathsf{IC}_{\overline{\mathcal{Y}}})|_{?\cdot v}^*) = \frac{1}{\prod_{\bar{\lambda}\in\mathfrak{B}^+}(1-q^{-\frac{1}{2}}e^{\bar{\lambda}})}$$

q^{-1/2}/₂ ↔ π̄ is stratified semi-small
𝔅⁺ = irred. components of 𝔅[×] of dim = crit(𝑋) as 𝑋 varies

Define V_X^+ to have basis \mathfrak{B}^+ .

The $(SL_2)_{\alpha}$ -action on $V_X^+ \oplus (V_X^+)^*$ is defined by a reduction to the Hecke case $\mathbb{G}_m \setminus GL_2$.