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1. Introduction

The goal of this exposition is to give a streamlined introduction to the basic theory of D-
modules and then use them to give an overview of some preliminaries in geometric representation
theory.

Date: October 11, 2012.
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1.1. Background. We use algebraic geometry heavily throughout, citing EGA and [Har77]
when appropriate. We will also need to consider sheaves of rings and modules in the non-quasi-
coherent setting as well. For this, we found [KS94] to be excellent. The derived category is
essential in working with functors of D-modules. The book of [GM03] seems to be the most
comprehensive (see also [Wei94], [KS94], and [HTT08, Appendix]). The language of stacks
provides a helpful way of conceptualizing some of the ideas we present. For an introduction to
fibered categories, stacks, and descent, see [FGI+05, Chapter 1]. For algebraic stacks, we will
only need what is presented in [Wan11], but more general references include [sta] and [LMB00].

On the representation theory side, [DG70] is the canonical reference for generalities on affine
group schemes. Newer references in English include [Mil12], [Jan03], and [Wat79].

1.2. Outline. This essay consists of two parts. Part I, consisting of §2-4, develops the general
theory of calculus in the algebraic setting. We start by defining twisted differential operators,
with the main result showing that these objects satisfy smooth descent and hence can be defined
on an algebraic stack. The material largely follows [BB93]. The heart of the essay lies in §3-4,
where we have tried to give a succinct yet thorough introduction to the theory of D-modules on
smooth quasi-projective schemes. The organization and material follows the fantastic lecture
notes of [Ber84], though we appeal to [BGK+87] and [HTT08] to fill in some details. Our
approach in terms of proofs and references here was to balance readability and detailedness.
We only cite proofs that we found to be very easily accessible. In §5, the second part of the
essay, we develop the framework of equivariant objects using stacks. The goal here is to set up a
versatile theory that can then be applied to the case of flag varieties. The idea we had in mind
was to use the equivalence G\(G/H) ' (·/H) of quotient stacks to relate G-equivariant objects
on the quotient space G/H with H-actions on vector spaces. The main reference for this section
was again [BB93]. The expositions of [Gai05], [Kas89], and [Sun11] were also immensely helpful
overall guides during the writing process.

1.3. Notation. We fix an algebraically closed field k of characteristic 0, and we will work in
the category Sch/k of schemes over k. All schemes will be k-schemes and all sheaves will be of
k-vector spaces. For two k-schemes X and Y , we will use X ×Y to denote X ×Spec k Y . Tensor
products will be taken over k if not specified. We will consider a scheme as both a geometric
object and a sheaf on the site (Sch)fpqc without distinguishing the two. For k-schemes X and
S, we denote X(S) = Homk(S,X). For two morphisms of schemes X → S and Y → S, we use
pr1 : X ×S Y → X and pr2 : X ×S Y → Y to denote the projection morphisms when there is
no ambiguity. For a point s ∈ S, we let κ(s) equal the residue field.

For a scheme X, we let Ω1
X denote the sheaf of differential 1-forms. We use Hom,Der,End

to denote the corresponding sheaves. The tangent sheaf is defined as ΘX = HomOX (Ω1
X ,OX).

For an open subset U ⊂ X, we will use M(U) = Γ(U,M) to denote local sections. When there
is no confusion, we drop the subscript for O(X) = Γ(X,OX). We write m ∈ F to mean a local
section in Γ(U,F) for some open U . We will think of vector bundles both as locally free sheaves
and as geometric schemes. Let ϕ : Y → X be a morphism of schemes. We let f−1 denote
the sheaf inverse image and f∗ the inverse image of O-modules. The latter will also denote the
same functor for quasi-coherent sheaves. To minimize confusion, we use ϕ• to denote the sheaf
direct image, which preserves quasi-coherence when ϕ is quasi-compact.

If M,N are sheaves on schemes X,Y respectively, we use M�k N to denote the sheaf
pr−1

1 M⊗k pr−1
2 N on X ×Y . If M,N are O-modules, then we use M�O N to denote

OX ×Y ⊗
OX �k OY

(M�
k
N).
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In general, OX ×Y does not equal OX �k OY because X ×Y does not have the product topology.
For (x, y) ∈ X ×Y , the stalk OX ×Y,(x,y) is a localization of OX,x⊗k OY,y, so we do have that
OX ×Y is flat over OX �OY .

For a sheaf of rings A on a scheme X, we let Mod(A) denote the abelian category of sheaves
of A-modules and D(A) the derived category D(Mod(A)).

1.4. Acknowledgments. This essay was written for Part III of the Mathematical Tripos in
the academic year 2011-2012. I would like to thank Ian Grojnowski for introducing this essay
to me and being a fantastic guide along the way. I also wish to thank Yi Sun, Arnav Tripathy,
and Thanos D. Papäıoannou for many helpful discussions. I thank my parents for their love
and constant support.

2. Twisted differential operators

For a much more general and comprehensive account of differential modules, differential
algebras, and twisted differential operators, see [BB93, §1-2]. We merely present the parts of
their paper that we need and fill in some details. We also referred to [GD67, §16] and [Kas89].

2.1. Preliminary notions.

2.1.1. Let X be a scheme locally of finite type over k, and let X
(n)
∆ ↪→ X ×X be the n-th

infinitesimal neighborhood of the diagonal. Explicitly, the diagonal X ⊂ X ×X is covered by
U ×U for affine opens U ⊂ X. For U = SpecA, let I be the ideal defining the diagonal (i.e.,
the kernel of the multiplication map A⊗A→ A), which is generated by a⊗ 1−1⊗ a for a ∈ A.

Then X
(n)
∆ ∩ U ×U = U

(n)
∆ = Spec(A⊗A/In+1).

Let M be a sheaf of OX -bimodules on X, which is quasi-coherent with respect to the left
action. ThenM = M(U) is an (A⊗A)-module. We define a filtration F•M onM by F−1M = 0,
FnM = HomA⊗A(A⊗A/In+1,M). Equivalently, m ∈ FnM if (ad a0) · · · (ad an)m = 0 for any
(n + 1)-tuple of elements of A, where (ad a)m = am − ma. We say that M is a differential

bimodule if M = ∪FnM . For f ∈ A, the opens Uf ×U , Uf ×Uf , and U ×Uf coincide on U
(n)
∆ .

Considering FnM as a quasi-coherent sheaf on U
(n)
∆ shows that

Af ⊗
A
FnM ' Af ⊗

A
FnM ⊗

A
Af ' FnM ⊗

A
Af .

Assuming M is a differential bimodule, the above isomorphisms hold with FnM replaced by M .
In particular, M(Uf ) ' Af ⊗AM ' Af ⊗AM ⊗AAf . Since A is a finitely generated k-algebra,
I ⊂ A⊗A is finitely generated, so (Af ⊗Af )⊗A⊗A FnM ' FnM(Uf ).

We say that M is a differential OX-bimodule if there is a covering of X by open affines U
such that M(U) are differential bimodules. In this case, the above discussion shows that M is
also quasi-coherent with respect to the right action, and F•M is a filtration of quasi-coherent

OX -bimodules. Note that FnM can be considered as a quasi-coherent sheaf on X
(n)
∆ , with the

two actions gotten via pr
(n)
i∗ : X

(n)
∆ ↪→ X ×X ⇒ X. If X is quasi-separated, then FnM is

also quasi-coherent as a sheaf on the diagonal X ×X for all n, so we can consider M as a
quasi-coherent OX ×X -module.

2.1.2. Let F,G be quasi-coherent OX -modules. A k-linear morphism P : F → G is called a
differential operator of order ≤ n if PU ∈ FnHomk(F(U),G(U)) for any affine open U ⊂ X.
Let Difn(F,G) ⊂ Homk(F,G) be the subsheaf of differential operators of order ≤ n, which is
naturally a OX -bimodule.

Proposition 2.1.3. If F is coherent, then Difn(F,G) is a differential OX-bimodule.
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Proof. Cf. [GD67, Proposition 16.8.6]. It suffices to check quasi-coherence. Take an affine open
U = SpecA ⊂ X and let M = F(U) and N = G(U). Let Difn(M,N) = FnHomk(M,N).
Observe that

Difn(M,N) = HomA⊗A(A⊗A/In+1,Homk(M,N)) ' HomA(A⊗A/In+1⊗
A
M,N)

where the tensor is with respect to the right A-action on A⊗A/In+1 and the Hom is with
respect to the left. Since A is a finitely generated algebra, A⊗A/In+1 is a finitely presented
left A-module [GD67, Corollaire 16.4.22]. Therefore localization gives Af ⊗A Difn(M,N) '
Difn(Mf , Nf ). As a consequence, we get that Difn(F,G)|U ' LocA Difn(M,N). �

Define the differential OX -bimodule PnX = (pr
(n)
1 )•(OX(n)

∆

). In general, this is locally finitely

presented as an OX -module when X is locally of finite presentation over k. The proof of
Proposition 2.1.3 shows that

HomOX (PnX ⊗
OX

F,G)
∼→ Difn(F,G),

and we will often make use of this fact later to move tensor products around.

Let Dif(F,G) = ∪Difn(F,G). For coherent F, this is a differential OX -bimodule.

2.1.4. We say that a sheaf of OX -algebras A is an OX-differential algebra if multiplication
makes A a differential OX -bimodule. Then the commutator [a, b] = ab−ba satisfies the identities
[a, bc] = [a, b]c + b[a, c] and [a, [b, c]] = [[a, b], c] + [b, [a, c]] for a, b, c ∈ A. Induction shows that
F•A is a ring filtration and the associated graded algebra grF A is commutative.

Example 2.1.5. (i) For coherent F, the differential operators DF := Dif(F,F) form a differ-
ential algebra. Put DX = DOX . This is the algebra we will be focusing on.

(ii) Suppose A, B are differential algebras on schemes X,Y respectively. Then A�k B is
an OX �k OY -algebra. Define A�O B with respect to the left multiplication. Then for open
affines U ⊂ X, V ⊂ Y , we have (A�O B)(U ×V ) = A(U)⊗k B(V ). This gives A�O B an
algebra structure, and it follows that it is a differential OX ×Y -algebra. In particular, it is
quasi-coherent with respect to right multiplication, so we would have gotten the same algebra
if we had instead defined A�O B with respect to right multiplication at the start.

2.1.6. Let X be a smooth scheme. To properly state Beilinson-Bernstein localization, we must
consider twisted differential operators instead of just DX .

Definition 2.1.7. An algebra of twisted differential operators (tdo) is an OX -differential alge-
bra D with the following properties:

(i) OX → F0D is an isomorphism.
(ii) The morphism grF1 D → ΘX = Derk(OX ,OX) sending ξ 7→ [ξ, •] for ξ ∈ F1D is

surjective.

In (ii), the commutativity of grF D implies that [ξ, f ] lies in F0D = OX for f ∈ OX .

Example 2.1.8. Let L be a line bundle on X. Then DL (see Example 2.1.5(i)) is a tdo.
Conditions (i) and (ii) of Definition 2.1.7 are local, so we may assume L = OX . In this case,
F0DX = EndOX (OX) ' OX , and the inclusion Derk(OX ,OX) ⊂ Endk(OX) lies in F1DX . So
we in fact have a decomposition F1DX = OX ⊕ΘX as left OX -modules.

Lemma 2.1.9. Let D be a tdo. Then grF1 D → ΘX is an isomorphism, and the natural
morphism of OX-algebras SymOX

(grF1 D)→ grF D is an isomorphism.



INTRODUCTION TO D-MODULES AND REPRESENTATION THEORY 5

Proof. The injectivity of gr1 D = F1D/F0D → ΘX follows from the definition of F0D. We

prove that Symn
OX

(gr1 D)
∼→ grnD by induction on n. The claim is local, so we will assume

X is affine and Ω1
X is a free OX -module with basis dx1, . . . , dxm for xi ∈ Γ(X,OX) where

m = dimX (here we use that X is smooth). For P ∈ FnD, we have that [P, •] is a k-linear
morphism OX = F0D → Fn−1D. If we compose this with the projection Fn−1D → grn−1 D,
we get a derivation

[P, •] ∈ Derk(OX , grn−1 D) ' ΘX ⊗
OX

grn−1 D.

By induction hypothesis, grn−1 D
∼← Symn−1(gr1 D). Combining with gr1 D ' ΘX , we get a

morphism
grnD ↪→ gr1 D ⊗

OX

Symn−1(gr1 D)→ Symn(gr1 D)

where the second map is multiplication. For ξ1, . . . , ξn ∈ F1D and f ∈ OX , we have that

[ξ1 · · · ξn, f ] = Σni=1 ξ1 · · · [ξi, f ] · · · ξn. Thus ξ1 · · · ξn 7→ Σni=1 ξi⊗(ξ1 · · · ξ̂i · · · ξn) 7→ nξ1 · · · ξn
under the above morphism. Take ∂i ∈ F1D such that [∂i, xj ] = δij . For P ∈ FnD, the
derivation [P, •] corresponds to

m

Σ
i=1

∂i⊗[P, xi] ∈ gr1 D ⊗
OX

grn−1 D.

We have [∂i[P, xi], xj ] = δij [P, xi] + ∂i[[P, xi], xj ] and [[P, xi], xj ] = [[P, xj ], xi]. By induction
we see that Σmi=1 ∂i[[P, xj ], xi] = (n−1)[P, xj ] ∈ grn−1 D. The previous calculation implies that
Σmi=1 ∂i[P, xi] and nP coincide as derivations in Derk(OX , grn−1 D). Therefore they must also
be equal in grnD. Since we are in characteristic 0, this proves the desired isomorphism. �

Remark 2.1.10. Since ΘX is locally free, by inductively taking splittings of the grading and
applying Lemma 2.1.9, we see that D is a locally free OX -module (of infinite rank) with respect
to either the left or right action. This observation, together with the proof of Proposition 2.1.3,
shows that for a quasi-coherent sheaf F on a smooth X, we have a canonical isomorphism
F⊗OX DX

∼→ Dif(OX ,F).

2.1.11. Define a morphism of tdo’s to be a morphism of OX -algebras. By passing to the
associated graded, we deduce that any morphism of tdo’s is an isomorphism. In other words,
the tdo’s on X form a groupoid.

2.1.12. A Lie algebroid L on X is a quasi-coherent OX -module equipped with a morphism of
OX -modules σ : L→ ΘX and a k-linear pairing [•, •] : L⊗k L→ L such that

(i) [•, •] is a Lie algebra bracket and σ is a map of Lie algebras,
(ii) [ξ1, fξ2] = f [ξ1, ξ2] + σ(ξ1)(f)ξ2 for ξi ∈ L, f ∈ OX .

Lie algebroids form a category in an obvious way. The tangent sheaf ΘX is a Lie algebroid
(with σ = idΘX ). For any Lie algebroid L there is then a unique morphism L→ ΘX , which we
call the anchor.

2.1.13. Define the universal enveloping OX -differential algebra U(L) to be the sheaf of k-
algebras generated by OX and L modulo the relations

(i) OX
i→ U(L) is a morphism of k-algebras,

(ii) L
j→ U(L) is a morphism of Lie algebras,

(iii) j(fξ) = i(f)j(ξ) and [j(ξ), i(f)] = i(σ(ξ)(f)) for ξ ∈ L, f ∈ OX .

For a tdo D, observe that LieD := F1D with its left OX -action is a Lie algebroid, which we call
the Lie algebroid of D. Lemma 2.1.9 says that D is uniquely determined by LieD. Explicitly,
we have the following description.
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Proposition 2.1.14. A tdo D is isomorphic to U(LieD)/U(LieD)(i(1) − j(1)) as an OX-
algebra, where i, j are as above.

Proof. Note that i(1)− j(1) is central in U(LieD), so the left ideal is automatically a two-sided
ideal. So A := U(LieD)/U(LieD)(i(1)−j(1)) is a OX -algebra, which we give the ring filtration
induced by the universal enveloping algebra. Then grA is commutative, gr1 A = gr1 D, and
SymOX

(gr1 D)→ grA is surjective. Evidently we have a map of filtered algebras A→ D. The
composition SymOX

(gr1 D)→ grA→ grD is an isomorphism by Lemma 2.1.9, so grA→ grD
must in fact be an isomorphism. �

2.1.15. Let Mod(D) denote the abelian category of sheaves of left D-modules, on which we can
apply the well-developed general theory of sheaves of rings. We will primarily be concerned with
the abelian subcategory Modqc(D) of those modules which are quasi-coherent as OX -modules.
Unless otherwise stated, we will simply call these D-modules.

2.1.16. Put A = Γ(X,D). As in the case of O-modules, we have a pair of adjoint functors
LocD : Mod(A) � Modqc(D) : Γ(X, •) where LocD(M) := D⊗AM . Here A,M are the
constant sheaves. A formal argument [HTT08, Proposition 1.4.4] shows:

Lemma 2.1.17. The following are equivalent:

(i) Γ(X, •) is exact and Γ(X,M) = 0 for M ∈ Modqc(DX) implies M = 0.
(ii) The functors Γ(X, •) and LocD are quasi-inverse.

We say that X is D-affine if the above conditions are satisfied. Of course, any affine scheme is
D-affine for any tdo D.

2.2. Functoriality. Let ϕ : Y → X be a morphism of smooth schemes and D a tdo on X. Then
ϕ∗D = OY ⊗ϕ−1OX ϕ

−1D is a quasi-coherent OY -module with a right ϕ−1D-action. Define

ϕ]D = Difϕ−1D(ϕ∗D, ϕ∗D)

to be the sheaf of OY -differential operators that commute with the ϕ−1D-action.

Proposition 2.2.1. The algebra ϕ]D is a tdo, and we have an isomorphism of OY -modules

Lie(ϕ]D)
∼→ ΘY ×

ϕ∗ΘX
ϕ∗(LieD)

where dϕ : ΘY → ϕ∗ΘX is the dual of the canonical map ϕ∗Ω1
X → Ω1

Y .

Proof. First, let us show that ϕ]D is quasi-coherent. Observe that the universal property of
the tensor product gives an isomorphism of OY -bimodules

Difϕ−1D(ϕ∗D, ϕ∗D)
∼→ Difϕ−1OX (OY , ϕ

∗D).

By Proposition 2.1.3, M = Difk(OY , ϕ
∗D) is quasi-coherent with respect to either OY -action.

The OY -actions commute with the ϕ−1OX -actions on OY and ϕ∗D, so M has the struc-
ture of a ϕ−1OX -bimodule. Let us suppose that X = SpecA and Y = SpecB are affine.
Put M = Γ(Y,M) and IA ⊂ A⊗A the ideal of the diagonal. Then DifA(B,Γ(Y, ϕ∗D)) '
HomA⊗A(A⊗A/IA,M). Since A⊗A/IA is a finitely presented (A⊗A)-module, localization
over B⊗B commutes with the Hom. Quasi-coherence of M now implies that ϕ]D is quasi-
coherent and thus an OY -differential algebra.

We next prove that OY
∼→ F0(ϕ]D). Working locally, assume that Ω1

X has basis dx1, . . . , dxn
for xi ∈ Γ(X,OX) and let ξi ∈ F1D map to the dual basis in ΘX . Take P̃ ∈ F0(ϕ]D) =

HomOY ,ϕ−1D(ϕ∗D, ϕ∗D). Then P̃ (1⊗ 1) ∈ ϕ∗D commutes with ϕ−1OX . Lemma 2.1.9 implies

that P̃ (1⊗ 1) = P (ξ1, . . . , ξn) for some polynomial P on n indeterminants with coefficients
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in OY . On polynomials, one sees that − adxi(P (ξ1, . . . , ξn)) is simply the partial derivative
∂/∂ξi. Since P (ξ1, . . . , ξn) commutes with all xi, the polynomial P must be constant. Hence

P̃ (1⊗ 1) ∈ OY ⊂ ϕ∗D.

The morphism F1(ϕ]D)→ ΘY is now well-defined. Take P̃ ∈ F1(ϕ]D). For b ∈ OY , we have

(2.2.1.1) P̃ (b⊗ 1) = bP̃ (1⊗ 1) + [P̃ , b](1⊗ 1).

If a ∈ ϕ−1OX , then P̃ (ϕ∗(a)⊗ 1) = P̃ (1⊗ 1)a so that ad a(P̃ (1⊗ 1)) = −[P̃ , ϕ∗(a)](1⊗ 1) ∈
OY . Letting a = xi for i = 1, . . . , n and using the same polynomial argument as in the previous

paragraph, we deduce that P̃ (1⊗ 1) ∈ ϕ∗(F1D). The corresponding image [P̃ (1⊗ 1), •] in

Derk(ϕ−1OX ,OY ) ' ϕ∗ΘX coincides with [P̃ , ϕ∗(•)](1⊗ 1). This defines the desired morphism
of OY -modules F1(ϕ]D) → ϕ∗(F1D)×ϕ∗ΘX ΘY . Equation (2.2.1.1) shows that this morphism
is an isomorphism. Since ϕ∗(F1D)→ ϕ∗ΘX is surjective, the projection ϕ∗(F1D)×ϕ∗ΘX ΘY →
ΘY is also surjective. This proves condition (ii) of Definition 2.1.7, and we conclude that ϕ]D
is a tdo. �

2.2.2. We call ϕ]D the pullback of D along ϕ. A good way to think about ϕ]D is through
the following universal property: for an OY -differential algebra A, mapping to ϕ]D is the same
as providing an OY -algebra action A→ Endϕ−1D(ϕ∗D) on ϕ∗D that commutes with the right

ϕ−1D action. Functoriality of Homϕ−1OX (OY , ϕ
∗(•)) specifies what ϕ] does to morphisms.

This makes ϕ] a functor between the groupoids of tdo’s on X and Y .

2.2.3. Let L be a Lie algebroid on X. Define ϕ]L = ΘY ×ϕ∗ΘX ϕ∗L as an OY -module. We
make ϕ]L into a Lie algebroid by letting the anchor be the first projection to ΘY and defining
the bracket as[

(ξ,Σ
i
fi⊗Pi), (η,Σ

j
gj ⊗Qj)

]
=
(
[ξ, η], Σ

i,j
figj ⊗[Pi, Qj ] + ξ(gj)⊗Pi − η(fi)⊗Qj

)
for ξ, η ∈ ΘX , fi, gj ∈ OY , and Pi, Qj ∈ ϕ−1L. Clearly ϕ] is a functor. This is the Lie algebroid
pullback. One can then check using (2.2.1.1) that Proposition 2.2.1 gives an isomorphism
Lie(ϕ]D) ' ϕ](LieD) of Lie algebroids on Y .

Example 2.2.4. Let L be a line bundle on X. Then ϕ]DL ' Dϕ∗L. There is a natural map
Lie(Dϕ∗L)→ ϕ∗(LieDL)×ϕ∗ΘX ΘY induced from restriction. To see that it is an isomorphism,
we localize to assume L = OX . We observed in Example 2.1.8 that LieDX = OX ⊕ ΘX .
Therefore

LieDY ' OY ⊕ΘY ' ϕ∗(OX ⊕ΘX) ×
ϕ∗ΘX

ΘY .

Proposition 2.2.1 then implies that Lie(ϕ]DL) ' Lie(Dϕ∗L), and the isomorphism of tdo’s
follows from the explicit description of Proposition 2.1.14.

Lemma 2.2.5. If ϕ is étale, then evaluation at 1⊗ 1 defines an isomorphism ϕ]D→ ϕ∗D.

Proof. This holds in fact for any differential algebra (cf. [BB93, 1.4.5]). We will use the notations
and ideas of 2.1.1. Suppose for the moment that X = SpecA and Y = SpecB are affine, and
let IA, IB denote the corresponding kernels of multiplication. Then ϕ∗ΩX ' ΩY implies that
the ring morphism B⊗A(A⊗A/InA)

∼→ B⊗B/InB is an isomorphism of B-modules. In terms of

schemes, this says that X
(n)
∆ ×X ×X(Y ×X) ' Y

(n)
∆ ' X

(n)
∆ ×X ×X(X ×Y ). We deduce that

ϕ∗D ' D⊗ϕ−1OX OY has the structure of a differential OY -module, which induces an algebra

structure. Left multiplication consequently defines a morphism of OY -algebras ϕ∗D→ ϕ]D.
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Let us return to the affine situation and put R = Γ(X,D). Since A⊗A/InA is finitely
presented as a left A-module, we have canonical isomorphisms

B⊗
A

HomA⊗A(A⊗A/InA, R)
∼→ HomB⊗A(B⊗

A
(A⊗A/InA), B⊗

A
R)

∼← HomB⊗A(B⊗B/InB , B⊗
A
R) = DifnA(B,B⊗

A
R).

This coincides with the morphism ϕ∗(FnD)→ Fn(ϕ]D), so we are done. Consequently, evalu-
ation at 1⊗ 1 from ϕ]D→ ϕ∗D is a ring morphism. �

Example 2.2.6. Suppose ϕ : Y = T ×X → X is projection to the second factor. Then
ϕ∗D = OT �O D, and we have an isomorphism DT �O D

∼→ ϕ]D sending ∂⊗ a ∈ DT �D to
the operator t⊗ b 7→ ∂(t)⊗ ab (see Example 2.1.5).

2.2.7. Our definition of ϕ] gives ϕ∗D the structure of a (ϕ]D, ϕ−1D)-bimodule. If M is a
D-module, then the pullback

ϕ∗M = OY ⊗
ϕ−1OX

ϕ−1M ' ϕ∗D ⊗
ϕ−1D

ϕ−1M

has the structure of a ϕ]D-module.

2.2.8. Let ψ : Z → Y be another morphism of smooth schemes. Then the above discussion
gives ψ∗ϕ∗D the structure of a ψ]ϕ]D-module. Since ψ∗ϕ∗D ' (ϕ ◦ ψ)∗D, we get a canonical
morphism of OZ-algebras ψ]ϕ]D→ Endk((ϕ ◦ ψ)∗D), which must land in the differential part.
The ψ]ϕ]D-module structure comes from tensoring on the left, so it is compatible with the
right (ϕ ◦ ψ)−1D-action. Therefore we get a morphism of tdo’s cϕ,ψ : ψ]ϕ]D → (ϕ ◦ ψ)]D,
which is necessarily an isomorphism (see Remark 2.1.11).

The cϕ,ψ satisfy the relevant associativity axioms. In other words, pullback makes tdo’s a
category fibered in groupoids over the small site Xsm of schemes smooth over X.

Note that cϕ,ψ is defined so that the canonical isomorphism ψ∗ϕ∗D ' (ϕ◦ψ)∗D is a morphism
of ψ]ϕ]D-modules, where the action on the RHS comes from cϕ,ψ.

2.3. Smooth descent. We now have all the ingredients necessarily to show that tdo’s satisfy
the property of smooth descent. To be precise:

Lemma 2.3.1. Pullback defines an equivalence of categories between tdo’s on X and the cate-

gory of descent datum (Y,B, τ) where Y ∈ Xsm, B is a tdo on Y , and τ : pr]1B
∼→ pr]2B is an

isomorphism satisfying the cocycle condition pr]13(τ) = pr]23(τ) ◦ pr]12(τ).

Proof. Cf. [BB93, Lemma 1.5.4]. Let (Y
ϕ→ X,B, τ) be a descent datum. We would like to

specify a tdo A on X such that ϕ]A ' B in a natural way. First suppose that ϕ admits a section
s : X → Y such that ϕ ◦ s = idX . Then we can define A = s]B. Under the correspondence
X ×Y,pr1

(Y ×X Y ) ' Y , the transition morphism τ pulls back to an isomorphism

ϕ]A ' (s ◦ ϕ)]B
∼→ id]Y B.

The cocycle condition ensures that everything is canonical.

Any smooth morphism admits a section étale locally, so we have reduced to the case when ϕ
is étale. The proof of Lemma 2.2.5 shows that τ in fact gives us descent datum of quasi-coherent

sheaves (Y
(n)
∆ → X

(n)
∆ , FnB, τ). By faithfully flat descent of quasi-coherent sheaves [FGI+05,

Theorem 4.23], we get a differential OX -module A with ϕ∗A ' B. The algebra structure on A

is recovered by descent from B⊗OY B ' ϕ∗(A⊗OX A) → ϕ∗A ' B. This makes A a tdo, and
it is immediate that (Y,B, τ) 7→ A defines a functor quasi-inverse to pullback. �
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In other words, tdo’s form a stack on the small site Xsm.

2.3.2. The argument used to prove the lemma also shows that the categories Modqc(ϕ
]D), for

smooth morphisms Y
ϕ→ X, form a stack over Xsm. In particular, for D = DX , we get that

Modqc(DY ) for Y ∈ Xsm defines a stack.

2.3.3. Differential operators on algebraic stacks. The smooth descent property allows us
to define tdo’s on algebraic stacks, which will provide a nice framework for our later discussions1.

Let X be a smooth algebraic k-stack with schematic diagonal. A tdo on X consists of the
following data (cf. [BB93, 1.7]):

(i) For any scheme X and a smooth 1-morphism π : X → X one has a tdo D(X,π) on X.

(ii) For any (X,π), (X ′, π′) as above, a morphism α : X ′ → X, and a 2-morphism π′
α̃→ πα,

one has an isomorphism α̃D : D(X′,π′)
∼→ α]D(X,π).

We require the α̃D to satisfy the natural compatibilities with compositions of (α, α̃)’s.

Choose a smooth surjective 1-morphism π : X → X. Then the smooth descent property of
tdo’s implies that to define a tdo on X, it suffices to specify a single tdo D = D(X,π) on X and

an isomorphism γD : pr]1D
∼→ pr]2D satisfying the cocycle condition (observe that X ×XX is

representable by a scheme since X has schematic diagonal). This is the crucial point that we
will make use of later.

Given a tdo D on X, we define a D-module on X to be a collection of D(X,π)-modules M(X,π)

together with α̃D-isomorphisms M(X′,π′)
∼→ α∗M(X,π) compatible with compositions. Again,

smooth descent says that this is equivalent to giving, for a single smooth covering X
π→ X,

a D-module M on X together with a γD-isomorphism τM : pr∗1M
∼→ pr∗2M that satisfies the

cocycle condition. By a γD-morphism we mean that τM is a morphism of pr]1D-modules, where

pr]1D acts on pr∗2M via γD. The D-modules on X form an abelian category Modqc(X,D).

3. Operations on D-modules

All schemes in this section will be assumed to be smooth, quasi-projective2, and of pure
dimension. In the next two sections, we give an overview of the basic definitions and results
concerning D-modules when D = DX is the sheaf of (ordinary) differential operators on a
scheme X. The organization and content heavily follow [Ber84]. We also consulted [BGK+87],
[HTT08], and [Kas03] to help fill in details of proofs.

3.0.1. Let us first summarize some properties of DX from the discussion of §2. We have the
filtration FiDX = Dif i(OX ,OX) on DX , called the order filtration. The sheaf of OX -algebras
DX is quasi-coherent with respect to either left or right multiplication. There is a decomposition
F1DX = OX ⊕ΘX of left OX -modules, and ΘX ⊂ DX induces an isomorphism of commutative
OX -algebras SymOX

(ΘX) ' grF DX by Lemma 2.1.9. Proposition 2.1.14 gives an explicit
description of DX as the tensor algebra of ΘX over OX modulo the relations [ξ, f ] = ξ(f) for
ξ ∈ ΘX and f ∈ OX .

Since X is smooth of pure dimension n := dimX, for any x ∈ X there exists an affine
neighborhood U of x such that Ω1

X |U = Ω1
U is free with basis dx1, . . . , dxn for xi ∈ Γ(U,OX).

1The use of stacks introduces no new content; we just find that it gives a useful perspective.
2Quasi-projectivity is not necessary for anything not involving derived categories; finite type is enough.
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Let ∂1, . . . , ∂n be the dual basis of vector fields in ΘU , i.e., ∂i(xj) = δij . We call (xi, ∂i) a
coordinate system of U . The vector fields commute in DU , and we have

DU ' ⊕
α∈Nn

0

OU∂
α (∂α := ∂α1

1 · · · ∂αnn )

as a left OX -module. Any element P ∈ DU can then be uniquely written in the form Σ fα∂
α

for fα ∈ OU . We can make the analogous statements for DU as a right OX -module.

3.1. Left and right D-modules. We will work in the abelian category Modqc(DX) of sheaves
of left DX -modules that are quasi-coherent as OX -modules, and we will simply call these DX -
modules unless otherwise specified. We analogously define the category Modqc(D

op
X ) of right

DX -modules.

Example 3.1.1. We may equip DX itself with either a left or right DX -module structure via
multiplication. By definition of differential operators, the structure sheaf OX is a left DX -
module.

3.1.2. Proposition 2.1.14 gives us a more explicit way of defining DX -modules: Let M be a
quasi-coherent OX -module. Then giving a left (resp. right) DX -module structure on M extend-
ing the OX -module structure is equivalent to giving a k-linear morphism ΘX → Endk(M) : ξ 7→
∇ξ satisfying the conditions:

(i) ∇fξ(m) = f∇ξ(m) (resp. ∇fξ(m) = ∇ξ(fm)),
(ii) ∇ξ(fm) = ξ(f)m+ f∇ξ(m),

(iii) ∇[ξ1,ξ2](m) = [∇ξ1 ,∇ξ2 ](m)

for all f ∈ OX , ξ ∈ ΘX , and m ∈M. Given ∇, the DX -action on M is defined by ξm = ∇ξ(m)
(resp. mξ = −∇ξ(m). Note the sign difference).

3.1.3. Let ΩnX = ∧n Ω1
X denote the canonical sheaf on X where n = dimX. By considering

the isomorphism ΩnX ' HomOX (∧n ΘX ,OX), we have a natural action of ΘX on ΩnX called the
Lie derivative, which is defined by

(Lieξ ω)(ξ1, . . . , ξn) = ξ(ω(ξ1, . . . , ξn))−
n

Σ
i=1

ω(ξ1, . . . , [ξ, ξi], . . . , ξn)

for ω ∈ ΩnX and ξ, ξ1, . . . , ξn ∈ ΘX . One can now check the conditions of 3.1.2 to see that
ωξ := −Lieξ ω defines a right DX -module structure on ΩnX . Condition (iii) relies on the fact
that ΩnX consists of differential forms of top degree.

We may also define some basic tensor and Hom operations over OX using 3.1.2.

Proposition 3.1.4. Let M,N ∈ Modqc(DX) and M′,N′ ∈ Modqc(D
op
X ). Then we have

M⊗OX N ∈ Modqc(DX) ξ(m⊗ `) = (ξm)⊗ `+m⊗ ξ`,
M′⊗OX N ∈ Modqc(D

op
X ) (m′⊗ `)ξ = m′ξ⊗ `−m′⊗ ξ`,

HomOX (M,N) ∈ Modqc(DX) (ξφ)(m) = ξ(φ(m))− φ(ξm),
HomOX (M′,N′) ∈ Modqc(DX) (ξφ)(m) = −φ(m)ξ + φ(mξ),
HomOX (M,N′) ∈ Modqc(D

op
X ) (φξ)(m) = φ(m)ξ + φ(ξm)

where ξ ∈ ΘX ,m ∈ M, ` ∈ N,m′ ∈ M′, and φ is a morphism between the relevant modules.
This makes Modqc(DX) into a tensor category.

Remark 3.1.5. An easy way to remember the consequences of Proposition 3.1.4 is Oda’s rule
(cf. [HTT08, Remark 1.2.10]), which says that a line bundle on a smooth curve of genus g is a left
(resp. right) DX -module if and only if it is of degree 0 (resp. 2g− 2). By considering “left”= 0,
“right”= 1 and ⊗ ↔ +, Hom(•,F) = − • +F, we get the right answer in determining if the
action is on the left or right. Oda’s rule also shows that there is no DX -module structure on
M′⊗OX N′.
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3.1.6. By considering DX as a left DX -module, we get a right DX -module

ΩDX := ΩnX ⊗
OX

DX .

It has two commuting right DX -actions: one from the tensor product and another from right
multiplications on DX . In other words, ΩDX is a (Dop

X ,DX)-bimodule.
There is a unique k-linear involution v of ΩDX that interchanges the two right DX -module

structures and is the identity on ΩnX ⊂ ΩDX . Explicitly v is defined by

v(ω⊗ ξ1 · · · ξi) = Σ(−1)mωξj1 · · · ξjn−m ⊗ ξ`m · · · ξ`1
for ω ∈ ΩnX and ξ1, . . . , ξi ∈ ΘX , where the sum is over all {j1 < · · · < jn−m} t {`1 < · · · <
`m} = {1, . . . , n} and we appeal to the description of DX mentioned in 3.0.1. A computation
shows that v is an involution, and the definition was forced such that it interchanges the two
right DX -module structures. Warning: the two OX -actions on ΩDX are not the same; they
correspond to the OX -bimodule structure on DX .

Define DΩ
X = HomD

op
X

(ΩDX ,DX) where we consider ΩDX with its first structure. Then

DΩ
X has two commuting left DX -module structures: one from left multiplications on DX and

another from the second right DX -module structure on ΩDX . We will suggestively say that
DΩ
X is a (DX ,D

op
X )-bimodule.

Thinking of D
op
X and DX as distinct algebras, the (Dop

X ,DX)-bimodule structure on ΩDX

gives us the usual ⊗, Hom adjunction (of bimodules over noncommutative rings)

HomD
op
X

(
ΩDX ⊗

DX

M,M′
)
∼→ HomDX

(
M,HomD

op
X

(ΩDX ,M
′)
)

for M ∈ Modqc(DX) and M′ ∈ Modqc(D
op
X ). In other words, we have a pair of adjoint functors

−→
Ω : Modqc(DX)� Modqc(D

op
X ) :

←−
Ω defined by

−→
Ω (M) = ΩDX ⊗

DX

M ' ΩnX ⊗
OX

M and
←−
Ω (M′) = HomD

op
X

(ΩDX ,M
′).

Proposition 3.1.7. The functors
−→
Ω and

←−
Ω are quasi-inverse. Furthermore, the natural map

M′ ⊗
DX

DΩ
X
∼→
←−
Ω (M′)

is an isomorphism.

Proof. We must check that certain natural morphisms are isomorphisms in the categories of
left and right DX -modules. By applying the involution v, which is the identity on ΩnX ⊂ ΩΩX ,
we reduce to showing certain isomorphisms in the category of OX -modules. There everything
follows from ΩnX being a line bundle. �

Warning: Oda’s rule tells us that Ω−nX does not have a DX -module structure, so we will try

to use DΩ
X instead of Ω−nX whenever possible when working with DX -modules.

Remark 3.1.8. Since ΩnX is locally free of rank 1 as an OX -module, we see that ΩDX with its
second structure is locally free of rank 1 as a right DX -module. Applying the involution v,
we deduce that ΩDX is also locally free if considered with its first structure. Similarly, DΩ

X is

locally free of rank 1 as a left DX -module. In particular, we deduce that
−→
Ω and

←−
Ω are exact

functors.
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Example 3.1.9. Suppose that X is affine with a coordinate system (xi, ∂i). We have a trivi-

alization OX
∼→ ΩnX via the top form ν = dx1 · · · dxn. For P = Σ fα∂

α ∈ DX , define the formal
adjoint tP = Σ(−∂)αfα, where (−∂)α = (−1)α1+···+αn∂α. Since Lie∂i(ν) = 0 and the ∂i com-

mute, we see that
−→
Ω (M) takes the same underlying OX -module and gives it a right DX -action

by mP := (tP )m. This in particular shows us what the bimodule structure on ΩDX looks like.
The involution v now coincides with the ring anti-isomorphism P 7→ tP of DX . It follows that
for Q = Σ ∂αfα ∈ DX , the formal adjoint tQ = Σ fα(−∂)α. On the other side, we see that
←−
Ω (M′) takes the same underlying OX -module and gives it a left DX -action by Pm′ := m′(tP ).
This gives the bimodule structure on DΩ

X .

3.2. Derived categories. As we will see shortly, in order for some operations on D-modules
to make sense, we must make full use of derived categories (cf. [GM03]). In this section, we use
some (noncommutative) algebra and algebraic geometry to show that the triangulated category
Db(Modqc(DX)) of complexes with bounded cohomology is “nice” enough for us to work in.

For an arbitrary sheaf of rings A on X, let D(A) denote the derived category D(Mod(A)).
Good references on the general theory of D(A) are [KS94] and [HTT08, Appendix C]). In some
of the intermediate steps of our arguments, we will encounter non-quasi-coherent sheaves, so one
might wonder if we should work in D(DX) or D(Modqc(DX)). Luckily, we have the following
theorem [BGK+87, VI, Theorem 2.10] of Bernstein:

Theorem 3.2.1 (J. Bernstein). Let X be a noetherian separated scheme. Suppose we have a
sheaf of OX-algebras A on X that is quasi-coherent as a left OX-module. Let Db

qc(Mod(A)) ⊂
D(A) denote the full triangulated subcategory of complexes with bounded quasi-coherent coho-
mology. Then the natural morphism of derived categories

Db(Modqc(A))→ Db
qc(Mod(A))

induced by Modqc(A) ⊂ Mod(A) is an equivalence.

We will use Db
qc(DX) to denote Db(Modqc(DX)) since this is the triangulated category of

interest to us. The theorem allows us to implicitly identify this with Db
qc(Mod(DX)) so there

is no conflict with the usual notation.

Proposition 3.2.2. Let A = DX(U) for an open affine subset U ⊂ X. Then A is left and
right noetherian and has left and right global dimensions ≤ 2 dimX.

Proof. Cf. [HTT08, Propositions 1.4.6, D.1.4, Theorem D.2.6]3. The idea is to reduce everything
to the commutative case by using the order filtration on A. Let R = OX(U), which is a
commutative, noetherian, regular ring of global dimension n. Since ΘX(U) is a locally free R-
module of rank n, we deduce that grF A ' SymR ΘX(U) is a commutative, noetherian, regular
ring of global dimension 2n. We will prove the assertions with respect to left actions. The case
of right actions follows by replacing A with Aop.

Let I ⊂ A be a left ideal. Take the filtration on I induced by F•A. Then grF I ⊂ grF A is
a finitely generated ideal. One sees by induction and R = F0A that the generators of grF I lift
to generators of I. Hence A is left noetherian.

To show that gl dimA ≤ 2n, it suffices by a standard argument [Bou07, §8.3] to prove that
Ext2n+1

A (M,N) = 0 for finitely generated left A-modules M,N . Give M a filtration so that
grM is a finitely generated grA-module. Let C• → grM be a resolution by graded free grA-
modules of finite rank. This lifts to a resolution P• → M of M by filtered free A-modules

3The proof is more cleanly presented in the language of coherent modules and good filtrations, but to keep
the logical flow of our exposition, we give a proof without this terminology. The arguments are the same.
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of finite rank such that grP• = C• (here finite generation is needed to ensure our filtrations
are exhaustive). So Pi is a direct sum of copies of A with appropriate shifts in the indices of
the filtrations. Put an arbitrary filtration on N so we can consider H2n+1HomgrA(C•, grN) =

Ext2n+1
grA (grM, grN) = 0. The filtrations on P• and N induce filtrations of HomA(P•, N)

compatible with the differentials. Since the P• are free, the associated graded complex is just
HomgrA(C•, grN). A filtered complex is acyclic if its associated graded is, so we conclude that

H2n+1HomA(P•, N) = Ext2n+1
A (M,N) = 0. �

Proposition 3.2.3. The category Modqc(DX) has enough flasque injectives, and its global
dimension is finite. If X is quasi-projective, then Modqc(DX) has enough locally free objects.

Proof. Cf. [HTT08, Propositions 1.4.14, 1.4.18] and [BGK+87, VI, Theorem 1.10, §2]. �

We remind the reader that whenever we talk about derived categories of D-modules, we
will assume the underlying scheme is smooth, quasi-projective, and of pure dimension. As a
corollary of the above propositions, any object of Modqc(DX) admits a bounded injective right
resolution and a bounded locally projective left resolution. This will allow us to define the
necessary derived functors.

Remark 3.2.4. Let F : Modqc(DX)→ Modqc(DY ) be a left exact functor. Then the equivalences
Db
qc(D) ' Db

qc(Mod(D)) for D = DX and DY from Theorem 3.2.1 together with the universal
property of derived functors allows us to compute the right derived functor RF using a complex
of injective objects in either Modqc(DX) or Mod(DX).

3.2.5. Since
−→
Ω ,
←−
Ω are exact, we have induced quasi-inverse functors

−→
Ω : Db

qc(DX)� Db
qc(D

op
X ) :

←−
Ω .

3.3. Pullback and pushforward. Let ϕ : Y → X be a morphism of schemes.

3.3.1. Pullback. In 2.2.7 we defined the pullback functor ϕ∗ : Modqc(DX) → Modqc(ϕ
]DX).

Example 2.2.4 shows that ϕ]DX ' DY , so ϕ∗ defines the pullback from DX -modules to DY -
modules, and this functor coincides with the inverse image of O-modules. Unravelling the
constructions (see (2.2.1.1)), we see that the ΘY -action on ϕ∗M = OY ⊗ϕ−1OX ϕ

−1M for a
DX -module M is given by

ξ(f ⊗m) = ξ(f)⊗m+ fdϕ(ξ)(m) (ξ ∈ ΘY , f ∈ OY , m ∈M)

where dϕ : ΘY → ϕ∗ΘX is the differential of ϕ. We remark that ϕ∗ is naturally a tensor
functor.

3.3.2. It is more convenient to give another description of the pullback. Let DY→X denote
the (DY , ϕ

−1DX)-bimodule ϕ∗DX . Then by definition

ϕ∗M = DY→X ⊗
ϕ−1DX

ϕ−1M.

3.3.3. Since objects of Modqc(DX) admit bounded locally projective (hence flat) resolutions,
we have the left derived functor Lϕ∗ : Db

qc(DX)→ Db
qc(DY ), which is given by

Lϕ∗(M•) = DY→X
L
⊗

ϕ−1DX

ϕ−1(M•)

since ϕ−1 is exact. It turns out that it will be convenient to consider the shifted functor
ϕ! := Lϕ∗[dimY − dimX] : Db

qc(DX)→ Db
qc(DY ).
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3.3.4. Pushforward. It is more natural to define pushforwards for right D-modules. We define
the functor ϕ? : Db(Dop

Y )→ Db(Dop
X ) by

ϕ?(M
′•) = Rϕ•

(
M′•

L
⊗
DY

DY→X

)
.

Here •⊗LDY
DY→X sends Db(Dop

Y ) → Db(ϕ−1(Dop
X )) and Rϕ• : D(ϕ−1D

op
X ) → D(Dop

X ) is
the right derived functor of the direct image functor ϕ• for sheaves. Since Y is noetherian
of finite dimension, it follows from sheaf theory (cf. [HTT08, Proposition 1.5.4], [Har77, III,
Theorem 2.7]) that Rϕ• preserves boundedness. Note that it is not clear that ϕ? preserves
quasi-coherence. This will be shown later in Proposition 3.6.4.

Remark 3.3.5. The definition of ϕ? involves both a right exact functor •⊗DY
DY→X and a left

exact functor ϕ•. Without the use of derived categories, this definition does not make much
sense. In particular, it is not clear if quasi-coherence is preserved, and the composition rule
(see Proposition 3.3.7) may not hold.

We prefer to work with left D-modules, so let us define pushforward in this case using the

side changing operators. For M• ∈ Db(DY ), put F′• =
−→
Ω (M•)⊗LDY

DY→X . We have the
following projection formula relating D-modules:

Lemma 3.3.6. For F′• ∈ Db(ϕ−1(Dop
X )) and N• ∈ Db

qc(DX), there is a canonical isomorphism

Rϕ•(F
′•)

L
⊗
DX

N•
∼→ Rϕ•

(
F′•

L
⊗

ϕ−1DX

ϕ−1(N•)
)

in Db(Sh(X)), where Sh(X) is the category of abelian sheaves on X.

Proof. The morphism is defined using the adjunction of Rϕ•, ϕ
−1 and the compatibility of ϕ−1

with tensor products. The assertion is local, so we assume X is affine. Since X is noetherian,
Rϕ• commutes with direct limits [Har77, III, Proposition 2.9], so by taking the homotopy limit
of truncations, we may assume N is a single DX -module. Moreover X is affine, so we can
replace N by a free resolution. The morphism is clearly an isomorphism in this case. �

Since ΩDY and DΩ
X are locally free, Lemma 3.3.6 and associativity of (derived) tensor prod-

ucts gives a canonical isomorphism

←−
Ωϕ?
−→
Ω (M•) = Rϕ•(F

′•) ⊗
DX

DΩ
X
∼→ Rϕ•

((
ΩDY ⊗

DY

DY→X ⊗
ϕ−1DX

ϕ−1(DΩ
X)
) L
⊗
DY

M•
)
.

Defining the (ϕ−1(DX),DY )-bimodule DX←Y =
−→
Ω (ϕ∗(DΩ

X)), we have shown that the push-
forward on left D-modules ϕ? : Db(DY )→ Db(DX) can be equivalently defined by

ϕ?(M
•) = Rϕ•

(
DX←Y

L
⊗
DY

M•
)
.

Proposition 3.3.7. Let Z
ψ→ Y

ϕ→ X be morphisms of schemes. Then we have canonical
isomorphisms Lψ∗Lϕ∗

∼→ L(ϕ ◦ ψ)∗ and ϕ?ψ?
∼→ (ϕ ◦ ψ)?.

Proof. We have a canonical isomorphism ψ∗ϕ∗ ' (ϕ ◦ ψ)∗ of DZ-modules (see 2.2.8). Let
M• be a bounded complex of locally projective DX -modules, so Lϕ∗(M•) = ϕ∗(M•). Take a
bounded locally projective resolution P• → ϕ∗(M•) in Db

qc(DY ). Then Lψ∗Lϕ∗(M•) = ψ∗(P•),
and ψ∗(P•) → ψ∗ϕ∗(M•) ' (ϕ ◦ ψ)∗(M•) = L(ϕ ◦ ψ)∗(M•) defines the canonical morphism
Lψ∗Lϕ∗ → L(ϕ ◦ ψ)∗ by the universal property of derived functors. Since D is O-flat, both
P• and ϕ∗(M•) consist of flat OY -modules. Therefore by applying the forgetful functor to
O-modules, we deduce that ψ∗(P•)→ ψ∗ϕ∗(M•) is an isomorphism in Db

qc(DZ).
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We will show composition of pushforwards for right D-modules. Take M′• ∈ Db(Dop
Z ).

Lemma 3.3.6 gives us the canonical isomorphism

Rϕ•

(
Rψ•(M

′• L
⊗
DZ

DZ→Y )
L
⊗
DY

DY→X

)
∼→ Rϕ•Rψ•

(
(M′•

L
⊗
DZ

DZ→Y )
L
⊗

ϕ−1DY

ϕ−1DY→X

)
which one sees is compatible with the DX -action. The usual composition rule for derived
direct images of sheaves and associativity of derived tensor products [KS94, Exercise II.24]
imply that the RHS is isomorphic to R(ϕ ◦ ψ)•(M

′•⊗LDZ
Lψ∗(DY→X)). Since DX is OX -flat,

DY→X = Lϕ∗DX . Thus the composition rule for pullbacks gives Lψ∗(DY→X) ' DZ→X in
D(DZ). We conclude that the RHS is isomorphic to (ϕ ◦ ψ)?(M

′•). �

3.4. Closed embeddings and Kashiwara’s theorem. By considering the graph, any mor-
phism between schemes can be factored as the composition of a locally closed embedding and
a projection. In the following two subsections we will look more closely at what the pullback
and pushforward functors do in each of these situations.

3.4.1. Open embeddings. Let j : U ↪→ X be an open embedding. Then j−1 = j∗ = j! and
DU↪→X = DX |U = DU as a bimodule with the usual left and right actions. It follows that
DX←↩U = DU as well. Therefore j? = Rj• coincides with the derived sheaf direct image.

Since X is noetherian, j is quasi-compact so j• preserves quasi-coherence. Recall that j∗ is
left adjoint to j• and j∗j• = idU . For an arbitrary DX -module M, the kernel and cokernel of
the morphism M → j•j

∗M are supported on the closed subset Z = X − U (we do not give Z
a scheme structure). Let us consider the left exact functor ΓZ : Modqc(DX) → Modqc(DX)
given by taking the kernel ΓZ(M) := ker(F → j•j

∗F). For an open V ⊂ X, the local sec-
tions Γ(V,ΓZ(M)) = {m ∈ M(V ) | supp(m) ⊂ Z}. If M is flasque, then M � j•j

∗(M) is
surjective. Since Modqc(DX) has enough flasque injectives (Proposition 3.2.3), we always have
a distinguished triangle

(3.4.1.1) RΓZ(M•)→M• → j?j
!(M•)

for any M• ∈ Db
qc(DX).

3.4.2. Let Modqc,Z(DX) ⊂ Modqc(DX) denote the full subcategory of modules which are
set-theoretically supported on Z, and let Db

qc,Z(DX) denote the full subcategory of Db
qc(DX)

consisting of complexes with cohomology set-theoretically supported on Z. We deduce from
(3.4.1.1) that RΓZ defines a quasi-inverse to the inclusion

Db(Modqc,Z(DX))→ Db
qc,Z(DX),

so we in fact have an equivalence of categories.

3.4.3. Closed embeddings. Let i : Y ↪→ X be a closed embedding of schemes, with defining ideal
I ⊂ OX . Let r = dimY and n = dimX.

Example 3.4.4. To really see what’s going on, first assume that X is affine with a coordinate
system (xj , ∂j)j≤n such that I = (xr+1, . . . , xn) and (xj ◦ i, ∂i)j≤r form a coordinate system for
X (here for j ≤ r we use ∂j to denote both the derivation of OX and the induced derivation of
OY ). Let’s see what DY→X and DX←Y look like in this situation (cf. [HTT08, Examples 1.3.2,
1.3.5, 1.5.23]).

Recall that DX ' OX [∂1, . . . , ∂n] as left OX -modules. As we are in the situation where
the tangent space ΘX splits, we have a subring D′ = OX [∂1, . . . , ∂r] ⊂ DX and DX '
D′⊗k k[∂r+1, . . . , ∂n]. Observing that DY ' i∗D′, we see that DY→X = i∗DX is isomorphic to
DY ⊗k k[∂r+1, . . . , ∂n] as left DY -modules. The right i−1DX -action is evident.
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Let yj = xj ◦ i for j ≤ r. Then dx1 · · · dxn and dy1 · · · dyr simultaneously trivialize ΩnX and
ΩrY respectively, so DX←Y is isomorphic as a sheaf of vector spaces to DY→X ' OY [∂1, . . . , ∂n].
We use Example 3.1.9 to describe the (i−1DX ,DY )-actions. Take m ∈ DX←Y , P ∈ DY , and
Q ∈ i−1DX . Then mP := (tP )m and Qm := m(tQ), where the actions on the RHS are the
familiar ones in DY→X .

Observe from our explicit description that DX←Y ' k[∂1, . . . , ∂n]⊗k OY as an i−1OX -
module, where i−1OX acts via the surjection to OY . Consequently, i•DX←Y is a quasi-coherent
OX -module since i•OY is.

We now return to the general case. The smoothness of X and Y imply that ΘY ↪→ i∗ΘX

splits locally, so for every point y ∈ Y there is a neighborhood U ⊂ X containing y satisfying
the hypotheses of Example 3.4.4. From the local case we deduce that DX←Y is locally free of
infinite rank (unless r = n) as a DY -module. By considering locally free resolutions in Db

qc(DY ),
we deduce that i? preserves quasi-coherence since i•DX←Y is quasi-coherent.

On the other hand, i is affine, so i• is exact. Therefore i? ' i+ where i+ : Modqc(DY ) →
Modqc(DX) is the exact functor given by i+(M) = i•(DX←Y ⊗DY

M). Define the left exact
functor i+ : Modqc(DX)→ Modqc(DY ) by

i+(N) = Homi−1(DX)(DX←Y , i
−1(N)).

To see that i+ preserves quasi-coherence, let us reduce to the local case. The discussion of
Example 3.4.4 implies that i+(N) ' Homi−1OX (OY , i

−1N), which is the quasi-coherent OX -
module corresponding to the sections of N killed by I.

Lemma 3.4.5. The functor i+ is left adjoint to i+.

Proof. Cf. [HTT08, Proposition 1.5.25]. Recall that i• : Mod(i−1DY ) → Mod(DY ) is fully
faithful. We first show that the natural map

HomDX

(
i•(DX←Y ⊗

DY

M),N
)
→ i•Homi−1DX

(
DX←Y ⊗

DY

M, i−1N
)

induced by N → i•i
−1N is an isomorphism. The assertion is local, so assume the situation of

Example 3.4.4. Then DX←Y ' k[∂r+1, . . . , ∂n]⊗kDY as a right DY -module. Take a morphism
φ : DX←Y ⊗DY

M→ i−1N of i−1DX -modules. For f ∈ i−1I and m ∈M, one sees that

f · φ(1⊗m) = φ(1⊗ fm) = 0.

The image of φ is generated by φ(1⊗m) as an i−1DX -module, so φ factors through i−1ΓY (N).
Noting that ΓY (N) ' i•i−1ΓY (N) since ΓY (N) ⊂ N lies in the essential image of i•, we get the
desired inverse map i•(φ).

To finish, apply the adjunction of DX←Y ⊗DY
• and Homi−1DX

(DX←Y , •) to the RHS; then
take global sections on X. �

Theorem 3.4.6 (Kashiwara). The functors i+ : Modqc(DY ) � Modqc,Y (DX) : i+ are quasi-
inverse and define an equivalence of categories.

Proof. It suffices to show that the unit and counit of adjunction are isomorphisms, so we may
work locally. Since i+ = i?, Proposition 3.3.7 implies that i+ is compatible with composition.
Hence by induction we reduce to the setting of Example 3.4.4 with r = n− 1. Put x = xn and
∂ = ∂n. Then DX←Y ' k[∂]⊗kDY with actions via formal adjunctions.

Consider the unit id→ i+i+. For M ∈ Modqc(DY ),

i+i+(M) ' Homi−1DX

(
OY ⊗

i−1OX

i−1DX , k[∂]⊗
k
M
)
.
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Since OY = i−1OX/(x), the RHS is the kernel of the left action of x on k[∂]⊗kM. Calculating,
∂jx = x∂j + j∂j−1 ∈ DX . Thus from the twisted actions on DX←Y we see that x(∂j ⊗m) =
∂j ⊗(xm) + j∂j−1⊗m = j∂j−1⊗m. Therefore the kernel is just 1⊗M, as desired.

Now we show i+i
+ → id is an isomorphism. Take N ∈ Modqc,Y (DX). Consider the operator

θ = x∂ ∈ DX and the θ-eigenspaces Nj = {m | θm = jm} for j ∈ Z. Using ∂x = θ+ 1, we have

x : Nj � Nj+1 : ∂.

Since θ : Nj → Nj is an isomorphism for j < 0 and ∂x : Nj → Nj is an isomorphism for j < −1,
we get that x : Nj → Nj+1 and ∂ : Nj+1 → Nj are isomorphisms for j < −1. Let us prove that

ker(xj) ⊂ N−1 ⊕ · · · ⊕N−j

by induction on j ≥ 1. If m ∈ ker(x), then ∂xm = (θ + 1)m = 0 implies m ∈ N−1. For
j > 1, assume the claim for j − 1 and take m ∈ ker(xj). Then xm ∈ N−1 ⊕ · · · ⊕ N−j+1

implies ∂xm ∈ N−2 ⊕ · · · ⊕N−j . On the other hand, xj−1(θm+ jm) = 0. Therefore again by
the inductive hypothesis, θm + jm ∈ N−1 ⊕ · · · ⊕ N−j+1. Taking the difference, we find that
θm− ∂xm+ jm = (j − 1)m ∈ N−1 ⊕ · · · ⊕N−j .

Since N is set-theoretically supported on Y and quasi-coherent, for any m ∈ N there exists
j such that xjm = 0. Therefore N = k[∂]⊗k N−1. It follows from the decomposition that
ker(x) = N−1. From an earlier discussion, i•i

+(N) ' ker(x), so we win. �

3.4.7. We now consider what happens in the derived category.

Proposition 3.4.8. There is a functorial isomorphism Ri+ ' i! : Db
qc(DX)→ Db

qc(DY ).

Proof. Cf. [BGK+87, VI, §7] and [HTT08, Proposition 1.5.16]. We first prove the claim at the
cohomological level, i.e., that for N ∈ Modqc(DX), there exist functorial isomorphisms of DY -
modules Rpi+(N) ' Ln−r−pi∗(N) for all p. Suppose for the moment that we are in the local
situation of Example 3.4.4. We use the same notation. Then Y ↪→ X is a regular embedding,
so we have the Koszul resolution

0→
n−r
∧ V ⊗

k
i−1OX → · · · → V ⊗

k
i−1OX → i−1OX → OY → 0

where V is the k-vector space with basis dxr+1, . . . , dxn. The differential is given by

dxj1 ∧ · · · ∧ dxjp 7→
s

Σ
q=1

(−1)q+1xjqdxj1 ∧ · · · ∧ d̂xjq ∧ · · · ∧ dxjp .

We tensor on the right by i−1DX to get a resolution ∧• V ⊗k i−1DX → DY→X . Recall that
there is a subring D′ ' OX [∂1, . . . , ∂r] ⊂ DX commuting with xj for j > r. Therefore the
above is a resolution of (i−1D′, i−1DX)-bimodules. By choosing the trivializations of ΩnX and
ΩrY by dx1 · · · dxn and dy1 · · · dyr respectively, side changing via formal adjunction gives us a
resolution ∧• V ⊗k i−1DX → DX←Y of (DX , i

−1D′)-bimodules. The canonical isomorphism

Homi−1DX

( p
∧V ⊗

k
i−1DX , i

−1N
)
∼← (

p
∧V )∗⊗

k
i−1N

respects the left i−1D′-actions (adjunction is an involution). We have the natural pairing

∧n−r−p V ∼→ (∧p V )∗⊗∧n−r V : ω 7→ (ω ∧ •). The differential on ∧n−r−• V ⊗k i−1N induced
from this pairing is the Koszul differential [Eis95, Proposition 17.15] and commutes with the
left i−1D′-action. This provides us the local isomorphism

Ln−r−pi∗(N) ' Extpi−1DX
(DX←Y , i

−1N),

which is compatible with the i−1D′-action. We have a surjection of rings i−1D′ � DY , and both
of the above objects live in Modqc(DY ), so our isomorphism is DY -linear. Now one observes
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that our choices of trivializations are compatible with a change of basis for the dxj , so these
local isomorphisms of sheaves glue to give an isomorphism of DY -modules in the general case.

Next, we show that

Extpi−1DX
(DX←Y , i

−1N) ' Rpi+(N).

The proof of Lemma 3.4.5 shows that the natural map Homi−1DX
(DX←Y , i

−1ΓY (N))→ i+(N)
is an isomorphism. We have that i−1ΓY is right adjoint to i• : Mod(i−1DX) → Mod(DX),
which is exact. Therefore i−1ΓY sends injectives in Mod(DX) to injectives in Mod(i−1DX),
which implies (see Remark 3.2.4) that Ri+(N) ' Ri!RΓY (N). Now by the distinguished triangle
(3.4.1.1), it suffices to show that

Extpi−1DX
(DX←Y , i

−1j?j
!(N)) ' Ln−r−pi∗j?j!(N) = 0

for all p. The equality on the right follows from cohomology and base change for quasi-coherent
sheaves (cf. [LH09, Theorem 3.10.3]).

This proves the cohomological part of the proposition. In particular, we have shown i+ has
cohomological dimension n− r and Rn−ri+ ' i∗. Since Modqc(DX) has enough injectives and
locally projectives, and locally projective objects are i∗-acyclic, a formal result4 of derived cat-
egories (cf. [Har66, I, Proposition 7.4]) gives a functorial isomorphism between derived functors
Ri+ ' Li∗[r − n] = i!. �

Since i+ is exact and i+ is left exact, Lemma 3.4.5 implies that i? : Db
qc(DY ) → Db

qc(DX)

is left adjoint to Ri+ ' i!. Kashiwara’s theorem implies that restricting to i? : Db
qc(DY ) �

Db(Modqc,Y (DX)) : Ri+ gives an equivalence of categories. We also know (see 3.4.2) that
the inclusion Db(Modqc,Y (DX))→ Db

qc(DX) is an equivalence with quasi-inverse RΓY . In the

course of proving Proposition 3.4.8, we showed that Ri+ ' Ri+RΓY : Db
qc(DX) → Db

qc(DY ).

We summarize these results in view of Ri+ ' i!.

Corollary 3.4.9. The functors i? : Db
qc(DY )� Db

qc(DX) : i! form an adjoint pair which induce

an equivalence of categories between Db
qc(DY ) and Db

qc,Y (DX). Furthermore on Db
qc(DX) we

have an isomorphism i?i
! ' RΓY .

Remark 3.4.10 (D-modules on singular schemes). We have so far only considered D-modules
on smooth schemes. Suppose Z is a singular scheme of finite type. Then DZ is still defined,
but it may behave poorly, so we do not want to study modules on it. Instead, we locally embed
Z ↪→ X as a closed subscheme of a smooth scheme X and define the D-modules on Z to be
Modqc,Z(DX). Kashiwara’s theorem implies that this category is well-defined locally. Now we
glue these local pieces together to construct a category of D-modules in the general case (see
[Gai05, 5.11] for details).

We will continue working with only smooth schemes.

3.5. Some applications. Let us give a few examples of how Kashiwara’s theorem can be used.

3.5.1. O-coherent D-modules. We say that a DX -module M is O-coherent if it is coherent as
an OX -module. The following can be proved by elementary means [HTT08, Theorem 1.4.10],
but we give a proof following [Ber84] (see also [Gin98, Proposition 3.6.1]) as an application of
Kashiwara’s theorem.

Proposition 3.5.2. An O-coherent DX-module M is locally free as an OX-module.

4We use this argument because it is not a priori clear that the isomorphisms we get from the Koszul resolution
exist in D(DY ).
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Proof. It suffices to show that the dimension of the fibers dimk(M⊗OX κ(x)) is locally constant
for x ∈ X(k). To see this, take a basis of M⊗κ(x) and lift to local sections mi of M. By
Nakayama’s lemma and our hypothesis, there exists a neighborhood U such that the mi generate
M|U and are linearly independent in M⊗κ(y) for all y ∈ U . Now if Σ fimi = 0 for fi ∈ O(U),
then fi(y) = 0 for all y ∈ U . Therefore fi = 0 by Nullstellensatz.

By shrinking X, we assume it is irreducible and that there exists an étale morphism f : X →
An (which must be faithfully flat). Now for any two geometric points x, y ∈ X(k), take a line
A1 ↪→ An containing f(x) and f(y). Since A1 is geometrically unibranched, [GD67, Corollaire
18.10.3] implies that C = X ×An A1 ↪→ X is a smooth sub-curve containing x and y. Now by
pulling back D-modules, we can assume that X is a smooth curve.

Suppose the stalk Mx has torsion for some x ∈ X(k). Let ix : Spec k ↪→ X denote the
closed embedding of the point x. Then i+x (M) 6= 0, and Kashiwara’s theorem implies that
(ix)+i

+
x (M) ↪→ M is injective. This submodule is not coherent since (ix)+(k) = (ix)•DX←{x}

is an infinite sum of skyscraper sheaves if n > 0. Therefore M is torsion free, hence locally free,
since X is a smooth curve. �

3.5.3. D-modules on Pn. Recall the notion of a D-affine scheme introduced in 2.1.16.

Theorem 3.5.4. Projective space Pn is D-affine.

Proof. We consider the vector space V = kn+1 as an affine k-scheme with coordinate system

(xi, ∂i = ∂
∂xi

) for i = 0, . . . , n. Let V ◦ = V −{0}
j
↪→ V denote the open punctured subspace; so

V ◦
π→ X := P(V ) = Pn is a principal Gm-bundle. Take M ∈ Modqc(DX). Then Γ(V ◦, π∗M)

is a Gm-module, i.e., it has a Z-grading

⊕
i∈Z

Γ(X,M⊗O(i)).

On the other hand, j•π
∗(M) ∈ Modqc(DV ). Taking global sections Γ(V, •), we see that

Γ(V ◦, π∗M) is a D(V )-module. Consider the action of θ = Σxi∂i ∈ ΘV on π∗(M)|Uxi . We

have that {xjxi }j 6=i forms a coordinate system of π(Uxi), and θ(
xj
xi

) = xi∂i(
xj
xi

) + xj∂j(
xj
xi

) = 0.

So dπ(θ) = 0, and θ acts on π∗(M)|Uxi ' k[xi, x
−1
i ]⊗kM|π(Uxi )

as xi
d
dxi

. Therefore the θ-

eigenspaces of Γ(V ◦, π∗M) coincide with the Z-grading: θ acts on Γ(X,M⊗O(i)) by i.
Let 0 → M1 → M2 → M3 → 0 be a short exact sequence in Modqc(DX). Then we have an

exact sequence

0→ j•π
∗(M1)→ j•π

∗(M2)→ j•π
∗(M3)→ R1j•π

∗(M1)

since π is flat and j• is left exact. The last term R1j•π
∗(M1) is a DV -module supported

at 0 ∈ V , so by Kashiwara’s theorem, it is a direct sum of (i0)•(DV←{0}), which looks like
(i0)•(k)[∂0, . . . , ∂n] as a skyscraper sheaf. We can rewrite θ = Σ ∂ixi − (n + 1), so the formal
adjoint tθ = −(n+ 1)− Σxi∂i, which has eigenvalues −n− Z≥1. Therefore

0→ Γ(V, j•π
∗M1)θ=0 → Γ(V, j•π

∗M2)θ=0 → Γ(V, j•π
∗M3)θ=0 → 0

is exact, i.e., Γ(X, •) is exact.
Take M ∈ Modqc(X) such that Γ(X,M) = 0. This implies that θ acts as an automorphism

of j•π
∗M. However multiplication by xi gives an isomorphism of θ-eigenspaces on π∗(M)|Uxi ,

so we deduce that π∗M = 0. Therefore M = 0 since π is faithfully flat. �

The same proof shows that Pn×X is D-affine for any smooth affine scheme X, since V ×X
is still affine. There is just slightly more notation in that case.
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3.5.5. Grothendieck-Cousin methods. We present a D-module version of the Cousin complex
methods developed by Grothendieck, which we will later apply to the flag variety using the
Bruhat decomposition. The ideas here follow [Ber84, 2.4] and [Kem78, §7-10]. The latter
presents the theory for general sheaves.

Let X = Z0 ⊃ Z1 ⊃ · · · be a decreasing sequence of smooth closed subschemes of X. We
call this a smooth stratification of X. Denote i` : Z` − Z`−1 ↪→ X, which factors into an open
embedding j` : Z` − Z`−1 ↪→ Z`−1 and a closed embedding ī` : Z` ↪→ X. Consider a complex
M• ∈ Db

qc(DX). From (3.4.1.1) we get a distinguished triangle

RΓZ` (̄i
!
`−1M

•)→ ī!`−1(M•)→ j`?j
!
`ī

!
`−1(M•).

Corollary 3.4.9 tells us that RΓZ` ' ι`?ι
!
` where ι` : Z` ↪→ Z`−1. Applying ī`−1,? to the above

triangle and using composition rules, we then get a distinguished triangle

RΓZ`(M
•)→ RΓZ`−1

(M•)→ i`−1,?i
!
`−1(M•).

3.6. Smooth morphisms and products. Let ϕ : Y → X be a smooth morphism of relative
dimension r = dimY − dimX. Smoothness of ϕ implies that we have short exact sequences

0→ ϕ∗Ω1
X → Ω1

Y → Ω1
Y/X → 0 and 0→ ΘY/X → ΘY

dϕ→ ϕ∗ΘX → 0

of locally free OY -modules.
The exterior derivatives d : ΩpY/X → Ωp+1

Y/X are k-linear morphisms uniquely defined [GD67,

Définition 16.6.3] by the properties:

(i) d coincides with the usual differential OY → Ω1
Y/X for p = 0,

(ii) d2 = 0,
(iii) d(ωp ∧ ωq) = dωp ∧ ωq + (−1)pωp ∧ dωq for ωp ∈ ΩpY/X and ωq ∈ ΩqY/X .

For an OY -module M, a connection is a k-linear map

∇ : M→ Ω1
Y ⊗

OY

M

satisfying ∇(fm) = df ⊗m + f∇(m) for f ∈ OY , m ∈ M. Dually, this is equivalent to giving
a k-linear map ΘY → Endk(M) : ξ 7→ ∇ξ such that ∇fξ(m) = f∇ξ(m) and ∇ξ(fm) =
ξ(f)m+f∇ξ(m). For an OY -module with a connection, define the relative de Rham differentials

d : ΩpY/X ⊗OY M→ Ωp+1
Y/X ⊗OY M by the properties:

(i) d coincides with M
∇→ Ω1

Y ⊗OY M→ Ω1
Y/X ⊗OY M for p = 0,

(ii) d(ωp∧mq) = dωp∧mq +(−1)pωp∧dmq for ωp ∈ ΩpY/X and mq ∈ ΩqY/X ⊗OY M, where

dωp is the exterior derivative.

Using the properties of the exterior derivative and ∇, one sees that d(fωp∧mq) = d(ωp∧fmq),
so this new differential is well-defined. Note that d is a map between OY -modules, but it is
clearly not OY -linear.

It is more intuitive to think of ΩpY/X ⊗OY M ' HomOY (∧p ΘY/X ,M). Under this identifica-

tion, we can explicitly describe the de Rham differential by

dmp(ξ1, . . . , ξp+1) =
p+1

Σ
i=1

(−1)i−1∇ξi(mp(ξ1, . . . , ξ̂i, . . . , ξp+1)) +

Σ
i<j

(−1)i+jmp([ξi, ξj ], ξ1, . . . , ξ̂i, . . . , ξ̂j , . . . , ξp+1).

We say that the connection ∇ is flat or integrable if the curvature ∇2 : M → Ω2
Y ⊗OY M,

which is just d2 in the non-relative case of Y/k, is equal to 0. This is equivalent to requiring
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that [∇ξ1 ,∇ξ2 ] = ∇[ξ1,ξ2]. Our remarks in 3.1.2 can now be rephrased as: a left DY -module M

is the same as a quasi-coherent OY -module with a flat connection.

Corollary 3.6.1 (of Proposition 3.5.2). There is an equivalence of categories between O-
coherent DY -modules and vector bundles on Y with flat connections.

Let M be a left DY -module. Then flatness of ∇ together with property (ii) of d imply that
d2 for all p. Therefore we can functorially attach to M the relative de Rham complex of sheaves

DRY/X(M) =
(
M→ Ω1

Y/X ⊗
OY

M→ · · · → ΩrY/X ⊗
OY

M
)

living in degrees [0, r]. Note that the usual de Rham complex corresponding to the exterior
derivative is just DRY/X(OY ). Since DY is a DY -bimodule, DRY/X(DY ) is a complex of right
DY -modules. We see that DRY/X(M) ' DRY/X(DY )⊗DY

M as complexes.
Let n = dimX. By considering determinants, we have an isomorphism of OY -modules

ΩrY/X ' Ωn+r
Y ⊗

ϕ−1OX

ϕ−1Ω−nX .

The inclusion ϕ−1OX ↪→ ϕ−1DX thus induces an inclusion ΩrY/X ↪→ DX←Y of OY -modules.

Adjunction then gives us a morphism of right DY -modules α : ΩrY/X ⊗OY DY → DX←Y . To

get a better picture, we go to the local case:

Example 3.6.2. For any point y ∈ Y , smoothness of ϕ ensures we have affine neighborhoods
y ∈ U ⊂ Y and ϕ(y) ∈ V ⊂ X with coordinate systems (xj ◦ ϕ, yi; ξj , ∂i)j≤n,i≤r of U and
(xj , dϕ(ξj))j≤n of V . Hence dyi form a basis of ΩY/X and ∂i a dual basis of ΘY/X . Replacing
Y and X by U and V respectively, let us see what DY→X and DX←Y looks like.

We have DX ' OX [ξ1, . . . , ξn] as a left OX -module, so DY→X ' OY [ξ1, . . . , ξn] as an OY -
module. Additionally, DY ' OY [ξ1, . . . , ξn, ∂1, . . . , ∂r] and dϕ(∂i) = 0. The actions are evident.

We use d(xj ◦ ϕ) and dyi to simultaneously trivialize Ωn+r
Y , ΩnX , and ΩrY/X . Now DX←Y '

OY [ξ1, . . . , ξn] as an OY -module, and the (ϕ−1DX ,DY )-actions are defined using formal ad-
joints. The map α defined above corresponds under these trivializations to the map

OY [ξ1, . . . , ξn, ∂1, . . . , ∂r]→ OY [ξ1, . . . , ξn] : Σ fαξ
α 7→ Σ(−ξ)αfα,

r

Σ
i=1

DY ∂i 7→ 0.

In particular, α is surjective. In terms of coordinates, the differential of DRY/X(M) is given by

d(ωp⊗m) = dωp⊗m+
r

Σ
i=1

dyi ∧ ωp⊗ ∂im.

for ωp ∈ ΩpY/X and m ∈M. Observe that d(dy1 · · · d̂yi · · · dyr ⊗m) = (−1)i−1dy1 · · · dyr ⊗ ∂im.

Thus α ◦ d = 0 on Ωr−1
Y/X , so α defines a map of complexes DRY/X(DY )[r]→ DX←Y .

We return to the general setting, where our above observations concerning α still hold.

Lemma 3.6.3. We have an isomorphism α : DRY/X(DY )[r]
∼→ DX←Y in Db

qc(D
op
Y ).

Proof. We give the de Rham complex DRY/X(DY ) a filtration compatible with the differentials
by setting Fq(Ω

p
Y/X ⊗OY DY ) = ΩpY/X ⊗OY Fp+qDY . Give DX←Y the filtration induced from

the order filtration on DX . Then α becomes a map of filtered complexes, so it suffices to check
that grF (α) is an isomorphism. The corresponding map of associated graded complexes is

Ω•Y/X ⊗
OY

SymOY
(ΘY )→ ΩrY/X ⊗

OY

SymOY
(ϕ∗ΘX).

Tensoring this by Ω−rY/X , we get a Koszul resolution, which is acyclic. �
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The de Rham complex allows us to calculate the pushforward of M• ∈ Db
qc(DY ) by

ϕ?(M
•) ' Rϕ•

(
DRY/X(DY ) ⊗

DY

M•
)

[r],

which shows that ϕ? preserves quasi-coherence.

Proposition 3.6.4. Let ϕ : Y → X be a morphism of schemes. Then the pushforward ϕ?
sends Db

qc(DY )→ Db
qc(DX), i.e., quasi-coherence is preserved.

Proof. By considering the graph, ϕ factors as a closed embedding Y ↪→ X ×Y followed by a
projection X ×Y → X. We have shown the pushforward preserves quasi-coherence in each
case (the projection is a smooth morphism), so we are done by the composition rule. �

We will henceforth always consider ϕ? as a functor Db
qc(DY )→ Db

qc(DX).

3.6.5. Products and projections. For general smooth morphisms, DRY/X(M) is only a complex

of OY -modules, so it does not give a nice description of the ϕ−1DX action on DX←Y ⊗DY
M.

The situation is better when ϕ is a projection X = X1×X2 → X1 for schemes Xi. Let us look
more closely at this case.

3.6.6. Exterior products. We have an isomorphism of tdos �O DXi
∼→ DX (see Examples

2.1.5(ii) and 2.2.6). Flatness of OX over �k OXi implies flatness of DX over �kDXi . Given
DXi-modules Mi, we have a �kDXi-module structure on �kMi. Define

�
D
Mi = DX ⊗

�kDXi

(�
k
Mi) ∈ Modqc(DX).

Observe that �D composed with the forgetful functor coincides with �O. Of course for open
affine subsets Ui ⊂ Xi, these operations are the obvious ones on U1×U2. An equivalent
definition is M1�D M2 ' pr∗1M1⊗OX pr∗2M2 as DX -modules. Flatness implies that •�D • is
exact in both factors, so it extends to a bifunctor ΠDb

qc(DXi)→ Db
qc(DX) on derived categories.

There is an obvious compatibility with (derived) pullbacks. We make analogous definitions for
right D-modules.

3.6.7. Side changing and �. We have a splitting of OX -modules ⊕pr∗i (Ω
1
Xi

) ' Ω1
X . Taking

determinants gives �O ΩniXi
∼→ ΩnX where ni = dimXi. This isomorphism evidently respects

the right action by �O DXi . We deduce that

�
D

−→
Ω (Mi) '

−→
Ω (�

D
Mi)

as right DX -modules. As a consequence, note that �D
ΩDXi has the structure of either a

(Dop
X ,�kDXi)- or (�kD

op
Xi
,DX)-bimodule, depending on which action is used when tensoring

by DX . Similar statements hold for
←−
Ω .

3.6.8. We return to looking at the relative de Rham complex with respect to X → X1. By
base change, ΩpX/X1

' OX1
�O ΩpX2

. Hence

DRX/X1
(DX) ' DX1

�
D
DRX2

(DX2
)

as complexes of right DX -modules. Left multiplication on DX1
does not affect the differential,

so this is also a complex of left pr−1
1 D1-modules. We also have an isomorphism

DX1←X =
−→
Ω pr∗1(DΩ

X1
) '
−→
Ω (DΩ

X1
)�
D

−→
Ω (OX2

) ' DX1
�
D

Ωn2

X2

of (pr−1DX1 ,DX)-bimodules. Our map α : DRX/X1
(DX)[n2] → DX1←X is identity on the

DX1
component, so it is in fact an isomorphism in the derived category D(pr−1

1 DX1
⊗kDop

X ) of
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bimodules. So in the case of a projection, it is easy to get the DX1
-action on the pushforward

using the de Rham complex.

3.6.9. Pushforward and �. Let ϕi : Yi → Xi be arbitrary morphisms of schemes for i = 1, 2,
and let X = ΠXi, Y = ΠYi, and ϕ = Πϕi : Y → X. Let ni = dimXi. Then we have a
canonical isomorphism

DX←Y '
−→
Ωϕ∗

(
�
D
DΩ
Xi

)
' �

D

−→
Ωϕ∗i (D

Ω
Xi) = �

D
DXi←Yi

evidently of (�k ϕ
−1
i (DXi),DY )-bimodules.

Lemma 3.6.10. There is a canonical isomorphism

�
D
ϕi?(M

•
i )
∼→ ϕ?

(
�
D
M•i

)
∈ Db

qc(DX)

for M•i ∈ Db
qc(DYi).

Proof. First, let us define the desired morphism canonically. By adjunction, this is equivalent
to specifying a morphism

�
k
ϕ−1
i Rϕi•

(
DXi←Yi

L
⊗

DYi

M•i
)
→ DX←Y

L
⊗

�kDYi

(�
k
M•i ).

in D(�k ϕ
−1
i DXi). We have counits ϕ−1

i Rϕi• → id, so the LHS maps to �k(DXi←Yi ⊗LDYi
M•i ).

By assuming M•i consists of flat DYi -modules, we can move tensors around to see that this equals
(�kDXi←Yi)⊗L�kDYi

(�kM·i). Therefore our morphism is induced by �kDXi←Yi → DX←Y .

From the canonical construction, we see that the morphism is compatible with compositions
of ϕi. Therefore by decomposing ϕ as Y1×Y2 → X1×Y2 → X1×X2, we reduce to considering
the case of a morphism ϕ× id : Y ×T → X ×T given ϕ : Y → X. Take M• ∈ Db

qc(DY ) and

N• ∈ Db
qc(DT ). We would like to show that

ϕ?(M
•)�

D
N•

∼→ (ϕ× id)?(M
•�
D
N•).

Since ϕ can be further decomposed into a closed embedding and a smooth morphism, we can
consider each of these cases separately. Moreover, we may assume M• = M ∈ Modqc(DY )
consists of a single object. The assertion is local on X. From what we have already shown, in
both cases we can explicitly represent DX←Y ⊗DY

M by a complex consisting of quasi-coherent
sheaves on Y . We can then deduce the isomorphism from flat base change formulas for quasi-
coherent sheaves (cf. [HTT08, Proposition 1.5.30] for details). �

3.7. Base change. It turns out that pushforward and pullback intertwine nicely for arbitrary
morphisms, as long as our all of our schemes are smooth and quasi-projective (which is not the
case for quasi-coherent sheaves).

Theorem 3.7.1. Consider a Cartesian square

YZ
π̃ //

ϕ̃

��

Y

ϕ

��

Z
π // X

and suppose all schemes in the diagram are smooth and quasi-projective. There exists a func-
torial isomorphism π!ϕ? ' ϕ̃?π̃! : Db

qc(DY )→ Db
qc(DZ).
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Proof. Factor π into a closed embedding followed by a projection. If π : Z = X ×T → X is a
projection, then YZ = Y ×T and ϕ̃ = ϕ× id, so base change is a special case of Lemma 3.6.10.

Suppose that π = i : Z ↪→ X is a closed embedding. Consider the Cartesian squares

YZ
� � ĩ //

ϕ̃

��

Y

ϕ

��

YU?
_j̃

oo

��

Z
� � i // X U?

_j
oo

Since i! is right adjoint to i?, we have a canonical morphism ϕ̃?ĩ
! → i!ϕ?. By Kashiwara’s

theorem, it suffices to show this is an isomorphism after applying i?. Hence we would like to
show ϕ?RΓYZ

∼→ RΓZϕ?. Let M• ∈ Db
qc(DY ) and N• := ϕ?(M

•). From (3.4.1.1) with respect
to YU and U , we get a morphism of distinguished triangles

ϕ?RΓYZ (M•) //

��

ϕ?(M
•) // ϕ?j̃?j̃

!(M•)

∼
��

RΓZ(N•) // N• // j?j
!(N•)

in Db
qc(DX). The last arrow is an isomorphism since base change clearly holds for an open

subset U . Therefore the first arrow must also be an isomorphism. �

Remark 3.7.2. The isomorphism in Theorem 3.7.1 is canonical when π is either a projection or a
closed embedding, but it is not obvious whether it is independent of the choice of decomposition
of π. Unfortunately, we have not resolved this question.

4. Coherent and holonomic D-modules

This section is a continuation of §3. As before, all schemes are assumed to be smooth,
quasi-projective, and of pure dimension. We give an overview of the theory of coherent and
holonomic D-modules. We omit proofs more often here compared to the last section, as we
find the relevant expositions in [Ber84], [BGK+87], and [HTT08] to be satisfactory now that
we have developed the basic theory.

4.1. Coherence. There is a general definition of a coherent module over a sheaf of rings on
a topological space, but since we are on a scheme X and we know DX is quasi-coherent and
locally noetherian, a coherent DX -module is the same as a quasi-coherent DX -module locally
finitely generated over DX (cf. [HTT08, Proposition 1.4.9]).

From the corresponding facts concerning coherent OX -modules, one deduces the following
(cf. [HTT08, Corollary 1.4.17]).

Lemma 4.1.1.

(i) Any DX-module is a union of coherent DX-submodules.
(ii) A coherent DX-module is globally generated by a coherent OX-submodule.
(iii) Extension principle: if M is a DX-module, U ⊂ X an open subset, and NU ⊂ M|U a

coherent DU -submodule, then there exists a coherent DX-submodule N ⊂M such that
N|U = NU .

Let Modc(DX) ⊂ Modqc(DX) denote the full abelian subcategory of coherent DX -modules. The
proof of Proposition 3.2.3 shows that any coherent DX -module is a quotient of a locally free DX -
module of finite rank. Let Db

c(DX) ⊂ Db
qc(DX) be the full triangulated subcategory consisting
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of those complexes whose cohomology sheaves are coherent DX -modules. The analogue of
Theorem 3.2.1 is true in the coherent setting:

Proposition 4.1.2. The natural morphism Db(Modc(DX)) → Db
c(DX) is an equivalence of

categories.

Proof. We refer the reader to [BGK+87, VI, Proposition 2.11] for the proof. The main idea
is that since cohomology is bounded and locally finitely generated, there will only be finitely
many cocycles and coboundaries to deal with. The extension principle allows us to go from
local to global, so we can replace the objects in our complexes with coherent ones. �

Proposition 4.1.3. If M is a coherent DX-module, then supp(M) is closed in X.

Proof. Let F ⊂ M be a coherent OX -submodule generating M over DX . Take a point x /∈
supp(M) ⊃ supp(F). There is some open affine neighborhood x ∈ U such that F|U = 0. But
then M(U) = D(U) · F(U) = 0, so M|U = 0. Note that this implies supp(M) = supp(F). �

4.2. Proper pushforward.

Proposition 4.2.1. Let ϕ : Y → X be a proper morphism. Then ϕ?D
b
c(DY ) ⊂ Db

c(DX).

Proof. We are assuming Y is quasi-projective, so there is a locally closed embedding Y ↪→ Pn.
The graph of ϕ decomposes as Y ↪→ Y ×X ↪→ Pn×X → X. Properness of ϕ implies that
Y ↪→ Pn×X is in fact a closed embedding. Therefore it suffices to prove the claim for a
closed embedding and a projection Pn×X → X. Coherence is local, so we may assume that
X is affine. By truncation, we only need to show that ϕ?(M) ∈ Db

c(DX) for a single coherent
DY -module M.

Suppose ϕ = i is a closed embedding. Then Y is also affine, so M is the quotient of a free
DY -module of finite rank. Since i+ is exact, it suffices to check that i+(DY ) = i•DX←Y is
coherent. From Example 3.4.4, we know that i•DX←Y is locally isomorphic to DX/DXI as a
DX -module, where I is the defining ideal.

We are left with the case ϕ : Y = Pn×X → X. Theorem 3.5.4 established that Y is
D-affine. Thus M admits a bounded resolution by direct summands of free DY -modules of
finite rank. So we are reduced to proving that ϕ?(DY ) ∈ Db

c(DX). Since DY ' DPn �D DX ,
Lemma 3.6.10 implies that ϕ?(DY ) ' π?(DPn)⊗kDX where π : Pn → Spec k. Observe that
π?(DPn) = RΓ(Pn,ΩnPn) ' k[−n] by Serre Duality [Har77, III, Theorem 7.1]. �

4.3. Good filtrations and singular supports. Recall that DX has an order filtration such
that grF DX ' SymOX

ΘX =: A. Let T ∗(X) = SpecX A denote the cotangent bundle, i.e., the

geometric vector bundle corresponding to sheaf of differentials Ω1
X .

Let M be a DX -module. We will consider filtrations F0M ⊂ F1M ⊂ · · · ⊂ M of OX -
submodules such that M = ∪FiM and (FiDX)(FjM) ⊂ Fi+jM. Then the associated graded
module grF M is naturally acted on by A. We say that the filtration F•M is good if grF M

is a coherent A-module. This is equivalent to saying that each FiM is a coherent OX -module
and (F1DX)(FiM) = Fi+1M for i � 0. Any DX -module with a good filtration is coherent.
Conversely, if M ∈ Modc(DX), then it is generated by a coherent OX -submodule F0M, and we
can define a good filtration by FiM = (FiDX)(F0M).

Using the generic freeness result from commutative algebra and good filtrations, one can
deduce the following (cf. [BGK+87, VII, Lemma 9.3], [HTT08, Lemma 3.3.2]).

Lemma 4.3.1. Let M ∈ Modc(DX). Then there exists an open dense subset U ⊂ X on which
M is OU -locally free.
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4.3.2. For a coherent DX -module M with a good filtration, there is a coherent OT∗(X)-module

g̃rF M = OT∗(X) ⊗
π−1A

π−1(grF M)

on T ∗(X)
π→ X whose direct image is grF (M). We define the singular support SS(M) to be the

support of this module as a closed subscheme of T ∗(X) with the reduced scheme structure. By
standard arguments on filtrations (cf. [HTT08, Theorem 2.2.1, Appendix D]), we have:

Proposition 4.3.3. The singular support does not depend on the choice of a good filtration.

The singular support is a set-theoretic object; the above proposition is not necessarily true
if we did not make SS(M) reduced (cf. [MS11, Exercise 2.4.2]).

We define the defect of M as def(M) = dim SS(M)− dimX.

4.3.4. Take a coherent OX -submodule F ⊂ M generating M over DX . We saw in the proof
of Proposition 4.1.3 that supp(F) = supp(M). Consider the graded characteristic ideal J =
annA(grF M) ⊂ A corresponding to the good filtration (F•DX)F. Since grF M is generated as
an A-module by F, we have J ∩ OX = annOX (grF M) = annOX (F). We also deduce from the
grading that

SS(M) ∩ T ∗X(X) = supp(F) = supp(M),

where T ∗X(X) ⊂ T ∗(X) is the zero section. Since the closure π(V (J)) = V (J ∩ OX), it now
follows that π(SS(M)) = supp(M) as well.

We also observe from this discussion that SS(M) is contained in the zero section T ∗X(X) if
and only if M itself is O-coherent.

The singular support SS(M) is a closed conic inside T ∗(X): we have the factorization

T ∗(X)− T ∗X(X)→ P(Ω1
X)→ X,

where the first map is a principal Gm-bundle. Since grM is a graded A-module, it corresponds

to a quasi-coherent sheaf L̃oc(grM) on P(Ω1
X), which pulls back to g̃rM on T ∗X − T ∗X(X).

In this setup, SS(M)− T ∗X(X) is the Gm-invariant closed subset projecting to supp L̃oc(grM).
If we pick a k-point of X, then this says that the fiber of SS(M) (which is now inside An

k )
is stable under scalar multiplication by k×. Since P(Ω1

X) is proper over X, this shows that
π(SS(M)− T ∗X(X)) is closed in X.

4.3.5. The functors ϕ?, ϕ
! do not preserve D-coherency in general, but there are two cases

where we do know the effect of these functors on the singular support.
Let i : Y ↪→ X be a closed embedding. Then a DY -module M is coherent if and only if i+(M)

is coherent as a DX -module. The forward direction follows from Proposition 4.2.1. Conversely,
suppose i+(M) is coherent. We will work locally, so i+(M) ' k[∂r+1, . . . , ∂n]⊗k i•(M) where
n = dimX and r = dimY . We can assume our generators are monomials {Pj ⊗mj}, and then
in turn just take the {1⊗mj}. The mj define a map DN

Y → M. Applying i+, we have a map
DN
X → DN

X←Y = i+(DN
Y )→ i+(M). The j-th image of 1 ∈ DX is 1⊗mj , so the composed map

is just the canonical one and hence surjective. By Kashiwara’s theorem, the original map must
also be surjective, which shows M is coherent.

The surjection i∗ΩX → ΩY corresponds to a map ρ : T ∗(X)Y → T ∗(Y ) of schemes (vector
bundles) over Y . Here T ∗(X)Y = T ∗(X)×X Y ↪→ T ∗(X) is a smooth closed subscheme. If M
is coherent, we have

SS(i+(M)) = ρ−1(SS(M)) ⊂ T ∗(X)Y ,

which can be seen through the characteristic ideals of the filtrations corresponding to the above
discussion.
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Since ρ is smooth with fibers of dimension dimX − dimY , general properties of dimension
in flat families [Har77, III, Corollary 9.6] imply that i+ preserves the defect.

4.3.6. Let ϕ : Y → X be a smooth surjective morphism of schemes. Then a DX -module
M is coherent if and only if ϕ∗M is coherent as a DY -module. We have a surjection DY �
DY→X : 1 7→ 1, so the forward direction is easy. Conversely, suppose ϕ∗M = OY ⊗ϕ−1OX ϕ

−1M

is coherent. By shrinking X, we can pick generators of the form 1⊗mj . So we have a map
DN
X → M such that DN

Y → DN
Y→X = ϕ∗(DN

X) → ϕ∗M is surjective. Faithful flatness of ϕ
implies the mj generate M as a DY -module.

We can apply the exact functor ϕ∗ to any good filtration of M to get a good filtration
of ϕ∗M. Now we have an injection ϕ∗ΩX ↪→ ΩY which corresponds to a closed embedding
ρ : T ∗(X)Y ↪→ T ∗(Y ). The base change $ : T ∗(X)Y → T ∗(X) of ϕ is flat, so applying [GD65,
Proposition 2.1.11] to characteristic ideals, we see that

SS(ϕ∗M) = ρ($−1(SS(M)) ⊂ T ∗(Y ).

We assume X and Y are of pure dimension, so ϕ (and hence $) has fibers of dimension
dimY − dimX and ϕ∗ preserves the defect.

4.3.7. Bernstein’s inequality. We now come to a remarkable result of Bernstein’s that says that
the singular support cannot be too “small”.

Theorem 4.3.8 (Bernstein’s inequality). Let M be a nonzero coherent DX-module. Then
def(M) ≥ 0, i.e., dim SS(M) ≥ dimX.

Proof. If dim SS(M) < dimX, then π(SS(M)) = supp(M) is a proper closed subscheme of
X. By generic smoothness [Har77, III, Corollary 10.7], we can restrict to an open subset to
assume supp(M) is smooth and nonempty. Let i : Y = supp(M) ↪→ X be the inclusion. By
Kashiwara’s theorem and our discussion above, M ' i+(N) for a coherent DY -module N with
def(N) = def(M) < 0. We get a contradiction by induction on dimX. �

4.4. Functors for holonomic D-modules. We define a coherent DX -module M to be holo-
nomic if def(M) ≤ 0. By Bernstein’s inequality, this says that M is either zero or def(M) = 0,
i.e., M has “minimal possible size”. Let Modh(DX) ⊂ Modc(DX) denote the full subcategory
of holonomic DX -modules. For example, any O-coherent DX -module is holonomic.

Proposition 4.4.1.

(i) The subcategory Modh(DX) is abelian.
(ii) Any holonomic DX-module has finite length.

(iii) If M ∈ Modh(DX), then there exists an open dense subset U ⊂ X such that F|U is an
O-coherent DU -module.

Proof. Cf. [HTT08, Propositions 3.1.2, 3.1.6]. We remark that in (iii), U may be taken to be
the complement of the closed subset π(SS(M)− T ∗X(X)) ⊂ X. �

4.4.2. We know that D-modules satisfy the property of smooth descent (see 2.3.2). It follows
from 4.3.6 that coherent and holonomic D-modules also have this property.

4.4.3. We say that a complex M• ∈ Db
c(DX) is holonomic if all of its cohomology sheaves are

holonomic DX -modules. Let the full triangulated subcategory consisting of these complexes be
denoted Db

h(DX) ⊂ Db
c(DX).

Beilinson [Bĕı87] has shown that the natural morphism Db(Modh(DX)) → Db
h(DX) is an

equivalence, but we will not need this.
We will spend most of the rest of this section giving an overview of the proof of the following

main theorem.
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Theorem 4.4.4. Let ϕ : Y → X be a morphism of schemes. Then

ϕ? : Db
h(DY )→ Db

h(DX) and ϕ! : Db
h(DX)→ Db

h(DY ).

The proof is based on the following special case:

Lemma 4.4.5. Let i : Y ↪→ X be a locally closed embedding. Then i?D
b
h(DY ) ⊂ Db

h(DX).

Proof of Theorem 4.4.4 for ϕ!. It suffices to prove the theorem for ϕ a smooth morphism and
a closed embedding. Exactness of ϕ∗ and 4.3.6 imply the smooth case.

So consider Y
i
↪→ X

j
←↩ U where i is a closed embedding and U is the complement. Then

for M• ∈ Db
h(DY ), we have a distinguished triangle i?i

!(M•)→M• → j?(M
•|U ) from (3.4.1.1)

and Corollary 3.4.9. By the Key Lemma 4.4.5, we have that j?(M
•|U ) is a holonomic complex.

Therefore i?i
!(M•) ∈ Db

h(DX). Exactness of i+ and 4.3.5 imply that i!(M•) is holonomic. �

4.4.6. Criterion of holonomicity. Let M• ∈ Db
qc(DX). Then M• is holonomic if and only if

M• is coherent and there exists a dense subset V ⊂ X (e.g., V = X(k)) such that i!x(M•) has
finite dimensional cohomology for all x ∈ V .

The criterion says that holonomicity can be checked fiberwise. For the proof, see [Ber84,
3.3]. Recall the notion of a smooth stratification introduced in 3.5.5. Using the same notation,
the proof of the criterion also gives the following.

Corollary 4.4.7. A complex M• ∈ Db
qc(DX) is holonomic if and only if there exists a smooth

stratification X = Z0 ⊃ Z1 ⊃ · · · such that all i!`(M
•) have O-coherent cohomology.

Proof of Theorem 4.4.4 for ϕ?. The Key Lemma contains the case when ϕ is a closed em-
bedding, so we will only consider when ϕ : Y = X ×T → X is a proper projection. For
M• ∈ Db

h(DY ), proper pushforward (Proposition 4.2.1) implies that N• := ϕ?(M
•) is co-

herent. For a closed point x ∈ X(k), denote iTx : Tx = {x}×T ↪→ Y the closed em-
bedding and πx : Tx → {x} the projection to the point. By base change (Theorem 3.7.1),
i!x(N•) ' πx?i

!
Tx

(M•). We know that i!Tx preserves holonomicity, so i!Tx(M•) is in particu-

lar coherent. Using proper pushforward again, we get that πx?i
!
Tx

(M•) has finite dimensional
cohomology. We conclude that N• is holonomic using the fiber criterion. �

4.4.8. Duality functor. Over an arbitrary sheaf of rings R on X, there is a possible ambiguity
in what “locally projective” means (for some cover vs. for any cover). In general, it seems
RHomR(F, •) behaves best when F is locally finitely presented (cf. [Lur, §8]). So we will
only consider RHomDX

(M•, •) for M• ∈ Db
c(DX). Then M• is isomorphic to some bounded

complex P• of coherent locally projective DX -modules. In this “nice” case, HomDX
(P•, •) does

preserves acyclics, so by general derived category theory RHomDX
(M•, •) ' HomDX

(P•, •).
Define the duality functor D : Db

c(DX)op → Db
c(DX) by

D(M•) = RHomDX
(M•,DΩ

X)[dimX].

For a coherent locally projective DX -module P, we have that P∨ := HomDX
(P,DΩ

X) is a
left DX -module via the second action on DΩ

X . Now P is locally a direct summand of a free

DX -module of finite rank, from which we deduce that P∨ '
←−
ΩHomDX

(P,DX) is coher-

ent and locally projective, and (P∨)∨
∼← P. Therefore D2 ' id. By definition, HiD(M) =

ExtdimX+i
DX

(M,DΩ
X) for M ∈ Modc(DX).

The following theorem of Roos allows us to show that D is well-behaved.

Theorem 4.4.9 (Roos). Let M be a coherent DX-module. Then
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(i) codimT∗(X) SS(ExtiDX
(M,DΩ

X)) ≥ i for all i,

(ii) ExtiDX
(M,DΩ

X) = 0 for i < codim SS(M).

Proof. Cf. [HTT08, Theorem 2.6.7]. We may assume X is affine. The theorem is reminiscent of
the analogous result in commutative algebra for regular rings. Indeed, what the proof of Propo-
sition 3.2.2 really showed was that we can find a good filtration of M such that ExtiDX

(M,DX)

is a subquotient of ExtiA(grF M,A). This reduces the claim to the commutative setting. �

Corollary 4.4.10. Let M be a coherent DX-module.

(i) D(M) lives cohomologically in degrees [− dimX, 0].
(ii) M has a coherent locally projective resolution of length ≤ dimX.
(iii) M is holonomic if and only if HiD(M) = 0 for i 6= 0.
(iv) H0D gives an auto-duality Modh(DX)op → Modh(DX).

Proof. Cf. [Ber84, 3.6]. We expound on point (ii). It suffices to show that when X is affine, M
has projective dimension ≤ dimX. Let P• → M be a bounded coherent projective resolution
(living in degrees ≤ 0). Then DP• consists of coherent projective modules, lives in degrees
≥ −dimX, and is acyclic in degrees > 0. Projectivity implies that DP• ' τ≤0(DP•)⊕τ>0(DP•)
as complexes, where each summand still consists of coherent projectives. Then Dτ>0DP• = 0,
so we have P• ' D2P• ' Dτ≤0DP•, where the last complex consists of coherent projectives
living in degrees [−dimX, 0]. But then since Kb,proj(DX) ' Db(DX), we have a map of
complexes Dτ≤0DP• → P• →M, giving the desired resolution. �

Note that (iv) implies that D preserves Db
h(DX).

4.5. Lemma on b-functions. We now prove the Key Lemma 4.4.5. The case of a closed
embedding follows from 4.3.5. Hence we assume that j : U ↪→ X is an open embedding. We
may further assume that X is affine. It suffices to prove that j?(M) is a holonomic DX -complex
for a single object M ∈ Modh(DU ). Cover U by open affine subsets Ufα for fα ∈ Γ(X,OX). We

can replace M by its Čech resolution, which consists of objects (jα1,...,αi)?(M|Ufα1
···fαi

), where

jα1,...,αi : Ufα1 ···fαi ↪→ U is an affine morphism. Thus by composition we reduce to the case

where U = Uf is affine for some f ∈ Γ(X,OX). In this case j? = j• is exact. Finite generation
allows us to assume that M is generated by a single section m0 ∈ Γ(U,M).

4.5.1. The hard (and surprising) part of the lemma is that j?(M) is coherent as a DX -
module. This is far from true for O-modules. By quasi-coherence of DX , we see that D(U) =
∪0
n=−∞D(X)fn. Therefore j?(M) is generated as a DX -module by the sections fnm0 for all

n ∈ Z. We now come to the following remarkable result:

Lemma 4.5.2 (Lemma on b-functions). Suppose we have X affine, U = Uf
j
↪→ X for some

f ∈ Γ(X,OX), a holonomic DU -module M, and a section m0 ∈ Γ(U,M) = Γ(X, j?(M)). Then
there exists d0 ∈ D(X)[s] and a nonzero polynomial b0 ∈ k[s] such that for all n ∈ Z we have

d0(n)(fn+1m0) = b0(n)fnm0.

Note that if we replaced M by OU , then the statement of the lemma does not involve
holonomicity, yet the result is still nontrivial. The proof, however, relies heavily on the theory
of holonomic D-modules. In particular, it uses the following analogue of Lemma 4.1.1.

Lemma 4.5.3. If M is a DX-module, U ⊂ X an open subset, and NU ⊂ M|U a holonomic
DU -modules, then there exists a holonomic DX-submodule N ⊂M such that N|U = NU .

Proof. Cf. [Ber84, 3.7] and [HTT08, Proposition 3.1.7]. �
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We refer the reader to [Lic09, Theorem 2.1] for the proof of the lemma on b-functions. We
found the notation and reformulation used there, which follows [BG08], to be the most intuitive.
Another good proof is given in [Gin98, Lemma 4.2.2].

Remark 4.5.4. The generator of the principal ideal of all polynomials b0 ∈ k[s] satisfying the
formula in the lemma is called the b-function. By using Hironaka’s theorem on resolution of
singularities, Kashiwara [Kas03, Theorem 6.9] showed that the b-function has negative rational
zeros.

4.5.5. We now finish the proof of the Key Lemma 4.4.5. To do so, we will first summarize the
necessary notation and results from the proof of the lemma on b-functions. Define the special
DU [s]-module “fs” to be the free OU [s]-module of rank 1, generated by a formal symbol fs.
We give it the DU -action induced by the formula

ξ(fs) = sξ(f)f−1 · fs,

for any ξ ∈ ΘU . Consider the DU [s]-module M⊗ “fs” := M⊗OU “fs” and the DX [s]-module

j?(M⊗ “fs”).

There is a morphism of DX -modules evs=n : j?(M⊗ “fs”) → j?(M) for any integer n, which
sends m⊗ g(s) · fs 7→ g(n)fnm.

Let K = k(s) be the field of rational functions and X̂ = X ×Spec k SpecK the base change.
The lemma on b-functions is proved by showing that j?(M⊗ “fs”)⊗k[s]K, considered as a

DX(s) ' DX̂ -module over K, is generated by m0⊗ fs and holonomic5.

Let J ⊂ A[s] be an ideal such that J⊗k[s]K = annA(s) grF (j?(M⊗ “fs”)⊗k[s]K) with
respect to the good filtration induced by the generator m0⊗ fs. So

SpecX(A[s]/J)→ Spec k[s]

is a morphism of schemes whose generic fiber is (set-theoretically) the singular support of

j?(M⊗ “fs”)⊗k[s]K. The dimension of this fiber is ≤ dim X̂ = dimX by holonomicity. By
upper semi-continuity of fiber dimension, there are only finitely many points of Spec k[s] whose
fiber has dimension higher than dimX. So if we just choose any integer n outside of those
points, we get dim SpecX(A/ evs=n(J)) ≤ dimX. Since evs=n(J) ⊂ annA(fnm0) with respect
to the filtration (F•DX)fnm0, we deduce that DXf

nm0 ⊂ j?(M) is holonomic. Since any fnm0

generates j?(M) for n� 0 by the lemma on b-functions, we conclude that j?(M) is holonomic.

4.6. Duality. For a morphism ϕ : Y → X of schemes, we define two new functors

ϕ! = Dϕ?D : Db
h(DY )→ Db

h(DX) and ϕ? = Dϕ!D : Db
h(DX)→ Db

h(DY ).

To summarize, we have six functors ϕ!, ϕ?, ϕ!, ϕ?,DX ,DY acting on the derived categories of
bounded holonomic complexes. They are related in a manner entirely analogous to Verdier
duality for sheaves and Grothendieck’s coherent duality:

Theorem 4.6.1. The functors on Db
h(DY ) and Db

h(DX) are related as follows:

(i) There exists a canonical morphism of functors ϕ! → ϕ? which is an isomorphism if ϕ
is proper.

(ii) The functor ϕ! is left adjoint to ϕ!.
(iii) The functor ϕ? is left adjoint to ϕ?.
(iv) If ϕ is smooth, then ϕ! = ϕ?[2(dimY − dimX)].

5This discussion does not require K to be algebraically closed, but one could replace K with K if desired.
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Note that if ϕ is proper (resp. smooth), then ϕ! (resp. ϕ?) extends to coherent complexes.
Theorem 4.6.1 follows from more general statements in these contexts.

Theorem 4.6.2. Let ϕ : Y → X be a proper morphism. Then we have a canonical isomorphism
of functors ϕ?DY ' DXϕ? : Db

c(DY )→ Db
c(DX). The functor ϕ? is left adjoint to ϕ!.

Proof. Cf. [Ber84, 3.10], [HTT08, Theorem 2.7.2, Corollary 2.7.3], and [BGK+87, Theorem
9.12]. The morphism of functors ϕ?D → Dϕ? is constructed by considering the cases of ϕ a
closed embedding and a proper projection separately. One must then show that the resulting
morphism is independent of the choice of decomposition. The proof of this is sketched in
[BGK+87, 9.6.2]. �

Theorem 4.6.3. Let ϕ : Y → X be a smooth morphism. There exists a canonical isomorphism
of functors DY ϕ! ' ϕ!DX [−2(dimY − dimX)] : Db

c(DX)→ Db
c(DY ).

Proof. Cf. [Ber84, 3.13], [HTT08, Theorem 2.7.1], and [BGK+87, Proposition 9.13]. �

Proof of Theorem 4.6.1. Cf. [Ber84, 3.9], [HTT08, Theorems 3.2.14, 3.2.16], and [BGK+87,
Theorem 10.2]. Most of the work has already been done in the previous two theorems. �

5. Group actions

Let X be a scheme endowed with a left action act : G×X → X of an affine group scheme
of finite type over k. Denote the group multiplication by mult : G×G → G. The quotient
stack G\X is an algebraic k-stack with schematic diagonal [Wan11, Theorem 2.0.2]. We will
introduce G-equivariant objects by viewing them as corresponding objects on G\X.

5.1. Equivariant quasi-coherent sheaves. To warm up, let us review the theory of G-
equivariant quasi-coherent OX -modules through the stack perspective.

5.1.1. For a scheme Y , let QCoh(Y ) denote the category of quasi-coherent OY -modules. Then
QCoh forms a stack over the big fpqc site (Sch/k)fpqc by [FGI+05, Theorem 4.23]. Let X be
an algebraic k-stack with schematic diagonal. We define a quasi-coherent sheaf on X to be a

1-morphism of stacks X
F→ QCoh, i.e., specifying for every 1-morphism S

P→ X a quasi-coherent
sheaf FP on S in a way compatible with 2-morphisms and composition. Fix an fpqc 1-morphism
X → X. Then flat descent says the above definition is equivalent to giving a sheaf F ∈ QCoh(X)

together with an isomorphism τF : pr∗1F
∼→ pr∗2F satisfying the cocycle condition.

Let ϕ : Y → X be a morphism of algebraic stacks. Then considering a quasi-coherent sheaf

on X as a 1-morphism X
F→ QCoh, we define the pullback ϕ∗F simply as the composition

Y→ X→ QCoh. This is compatible with the usual pullback on schemes.

5.1.2. Now we consider when our stack is the quotient stack G\X. Then the trivial bundle
together with the action map G×X → X defines an fpqc 1-morphism X → G\X. We have an
isomorphism (act,pr2) : G×X → X ×G\X X where the corresponding 2-morphism is the map
G×G×X → G×G×X : (g1, g2, x) 7→ (g1g2, g2, x) of trivial G-bundles over G×X. Using
this isomorphism, we can identify

G×(G×X)
id×(act,pr2)

∼
// G×(X ×

G\X
X) ' (G×X) ×

pr2,G\X
X

(act,pr2)× id

∼
// X ×

G\X
X ×

G\X
X.

Under these identifications, pr13,pr23,pr12 correspond to the morphisms mult× id,pr23, id× act
respectively on G×G×X → G×X. Therefore we see that a quasi-coherent sheaf on G\X is
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the data of F ∈ QCoh(X) and an isomorphism τF : act∗F
∼→ pr∗2F such that the diagram

(5.1.2.1)

(id× act)∗act∗(F)
(id× act)∗(τF)

//

∼
��

(id× act)∗pr∗2(F)
∼ // pr∗23act∗(F)

pr∗23(τF)

��

(mult× id)∗act∗(F)
(mult× id)∗(τF)

// (mult× id)∗pr∗2(F)
∼ // pr∗23pr∗2(F)

of sheaves on G×G×X commutes. A morphism of sheaves on X\G is a morphism between
F’s compatible with the τ ’s.

5.1.3. Fix a scheme S. For an S-point x ∈ X(S), i.e., a morphism of schemes S
x→ X, let

Fx := x∗(F), which we think of as the S-point “fiber”. Then for g ∈ G(S) and x ∈ X(S), we

have an isomorphism τg,x := (g, x)∗(τF) between Fgx
∼→ Fx. The cocycle condition requires

that for g1, g2 ∈ G(S) and x ∈ X(S), the composition

Fg1g2x

τg1,g2x // Fg2x

τg2,x // Fx

must equal τg1g2,x. Conversely, taking S = G×X and (g, x) = idG×X shows that τg,x = τF, so
we have given another equivalent description of a quasi-coherent sheaf on G\X. This description
is more geometrically intuitive, as one can see that what we really have is a G-action on the
fibers of F compatible with the action on X.

Note that since τg,x is an isomorphism, we deduce from associativity that τ1,x = id. From this
we deduce that the restriction of τF to {1}×X ⊂ G×X is the identity map idF. Since G(S)
has inverses, we can also deduce from the fiber description that if we started with a morphism
τF : act∗F → pr∗2F, not a priori assumed to be an isomorphism, such that the restriction
to {1}×X is identity and the associativity condition of (5.1.2.1) holds, then τF must be an
isomorphism.

Definition 5.1.4. A G-equivariant quasi-coherent sheaf is a sheaf F ∈ QCoh(X) together with
a morphism τF : act∗F → pr∗2F satisfying any of the equivalent conditions mentioned above.
We denote the category of G-equivariant sheaves by QCoh(X,G).

So by flat descent (or one could just take this as the definition), we have an equivalence of
categories between QCoh(X,G) and the category QCoh(G\X) of quasi-coherent sheaves on the
quotient stack G\X.

5.1.5. Let us try to provide some more intuition. Suppose for the moment that X = SpecA is
affine. Then act corresponds to a map of rings act∗ : A→ O(G)⊗A. Let M be a G-equivariant
A-module. Then τM is a map of O(G)⊗A-modules

(O(G)⊗A) ⊗
act∗,A

M → O(G)⊗
k
M.

By tensor adjunction, this is equivalent to an A-linear morphism ∆M : M → O(G)⊗kM .
Note, however, that A acts on the right hand side by act∗, i.e., for f ∈ A and m ∈M , we have
∆M (fm) = act∗(f)∆M (m). The cocycle condition on τM is then equivalent to requiring that

(idO(G)⊗∆M )∆M = (mult∗⊗ idM )∆M and (ev1⊗ idM )∆M = idM .

This makes M a (left) comodule (cf. [Jan03, I, 2.8]) over the Hopf algebra O(G). Therefore we
see that G-equivariance of M is equivalent to giving it the structure of a G-module (=repre-
sentation) such that the G-action on M is “compatible” with the A-action through act∗. For
g ∈ G, the (left) action on M is given by g ·m = τg−1(m)
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5.1.6. We return to the case of a general scheme X and F ∈ QCoh(X,G). Let U
j
↪→ X be an

open affine subset. The problem is that U does not have to be preserved by G, so we cannot
directly apply our observations above. However, we can still see what happens once we pick
a particular element g ∈ G(k) to act with (here we could extend to an arbitrary base by base
change; we chose g to be a geometric point for simplicity and intuition). Then the action by g

sends actg : U
∼→ gU , and τg,j gives an isomorphism of OU -modules act∗g(F|gU ) ' F|U . If we

take local sections Γ(U, •), this becomes a map of O(U)-modules

O(U) ⊗
O(gU)

Γ(gU,F)
∼→ Γ(U,F).

Another way of saying this is that we have an act∗g-isomorphism Γ(gU,F)→ Γ(U,F).

5.1.7. Representations on global sections. Assume X is quasi-compact and quasi-separated. By
gluing maps together from the local situation, we can always give the space of global sections
Γ(X,F) a G-module structure. Explicitly, applying Γ(G×X, •) to τF, we get the following
morphism

∆F : Γ(X,F)
1⊗•→ Γ(G×X, act∗F)

Γ(τF)→ Γ(G×X,pr∗2F) ' O(G)⊗
k

Γ(X,F)

where the last step uses the projection formula and that global sections commutes with infinite
direct sums since X is quasi-compact and quasi-separated. The cocycle condition on τF ensures
that Γ(X,F) becomes a G-module.

It is easier to see what ∆F does if we look at the local picture. Let U ⊂ X be an open affine
subset. Then act(G×U) = G · U is open since G/k is fppf, and ∆F sends

Γ(G · U,F)→ Γ(G×U,OG×X) ⊗
act∗,Γ(G·U,OX)

Γ(G · U,F)→ O(G)⊗
k

Γ(U,F).

Since τF is compatible with taking stalks, if we evaluate (i.e., take the fiber) at g ∈ G(k), then
we are restricting our global section to Γ(gU,F) and then applying τF to get a local section in
Γ(U,F), as described earlier. These local sections then patch across different U to give a global
section.

Note that the G-action is not O(X)-linear: for a fixed g, the action of g−1 is an act∗g-
morphism. In other words, the G-module structure is compatible with the OX -module structure
on F via act, as we already noted for the affine case.

Example 5.1.8. The structure sheaf OX has a G-equivariant structure via the canonical iso-
morphisms act∗OX ' OG×X ' pr∗2OX . Note that in this case act∗ : act−1OX → OG×X is
the morphism of structure rings attached to the morphism of ringed spaces act : G×X → X.
Thus the G-action on global sections is the natural one: for a regular function f ∈ Γ(X,OX)
and a geometric point g ∈ G(k), the regular function g · f ∈ Γ(X,OX) sends x 7→ f(g−1x) for
x ∈ X(k).

5.1.9. Infinitesimal actions. The ideas here are mainly from [Kem78, §1]. Just as we consider
the Lie algebra representation corresponding to a group representation, we would like to attach
some kind of Lie algebra action to a G-equivariant sheaf.

Let m ⊂ O(G) denote the maximal ideal corresponding to the identity 1 ∈ G(k). Let Gi =
Spec(O(G)/mi+1) be the i-th infinitesimal neighborhood of 1, which is a closed subscheme (but
not a subgroup) of G. Then act restricts to a map acti : Gi×X → X which is the identity on
topological spaces. In particular for an open subset U ⊂ X we always have act−1

i (U) = Gi×U ,
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which is homeomorphic to U . Therefore we have no problems applying our discussion of 5.1.5
to get morphisms

∆i,U : Γ(U,F)→ Γ(Gi×U, act∗iF)
Γ(τF)→ Γ(Gi×U,pr∗2F) ' O(Gi)⊗

k
Γ(U,F).

We can do this for all open subsets U , and the maps are clearly compatible. Thus we get a map
of sheaves ∆i : F → O(Gi)⊗k F. The ∆i are compatible with the inclusions Gi ↪→ Gj for i ≤ j,
so the inverse limit F → Ô(G)⊗k F makes F into a comodule over the formal group Ô(G).

Since we want a Lie algebra action, we take vector space duals to get a map

Dist(G)→ Endk(F)

where Dist(G) := lim−→(O(G)/mi+1)∗ has the structure of a filtered associative k-algebra induced

from the Hopf algebra structure of O(G) (cf. [Jan03, 7.7]). The associativity axiom of τF implies
that we actually have a map of k-algebras. In particular, as g = (m/m2)∗ ⊂ Dist(G), we have
a map of Lie algebras αF : g→ Endk(F), which gives us our desired action.

5.1.10. Once again, we would like to give a more intuitive explanation of this action. Let
k[ε] := k[ε]/ε2 denote the dual numbers. We will think of the Lie algebra as g = Derk(O(G), k).
Observe that we can identify

g ' G1(k[ε]) ' ker(G(k[ε])→ G(k)) : ξ 7→ 1 + ε · ξ.

Let U
j
↪→ X be an open affine subset and consider the extended scheme U [ε] = U ×Spec k Spec k[ε]

over k[ε]. For ξ ∈ g, consider the element g = 1 + ε · ξ ∈ G(k[ε]). We remarked earlier that
the discussion of 5.1.6 in fact holds for an arbitrary base, so let us base change from k to k[ε].
Then taking local sections of τg,j gives an act∗g-isomorphism Γ(g ·U [ε],F)→ Γ(U [ε],F). We are
working infinitesimally, so g 7→ 1 ∈ G(k) implies that g ·U [ε] = U [ε]. Therefore we in fact have
an act∗g-isomorphism Γ(U,F)⊗ k[ε]→ Γ(U,F)⊗ k[ε] which becomes the identity when we set ε
equal to zero. Equivalently, we have a k[ε]-linear morphism

Γ(U,F)
Γ(τg,j)→ Γ(U,F)⊕ ε · Γ(U,F) : m 7→ m+ ε · αF(ξ)(m)

which is act∗g-linear. So the Lie algebra action αF is really just describing the action of G1(k[ε])
points on our quasi-coherent sheaf F.

Applying the above to the case F = OX , we have the map αO : g→ Endk(OX). In this case,
τO is induced from act∗, so in the notation of the last paragraph, act∗g(f) = f + ε ·αO(ξ)(f) for
f ∈ O(U). Here act∗g : O(g · U [ε]) = O(U)⊗ k[ε] → O(U)⊗ k[ε] is a k[ε]-algebra isomorphism.
In particular, it respects multiplication so we deduce that αO(ξ) is a derivation. Therefore αO

is in fact a map of Lie algebras g→ Γ(X,ΘX).
Now for a general F ∈ QCoh(X,G), the act∗g-linearity condition can be expressed in terms

of αO by the formula

(5.1.10.1) αF(ξ)(f ·m) = f · αF(ξ)(m) + αO(ξ)(f) ·m.

The intuition is that if we base change to k[ε], then we can apply all of the usual techniques
and calculations from standard calculus to the algebraic setting.
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5.1.11. The map αO : g → Γ(X,ΘX) induces an OX -linear morphism σ : OX ⊗k g → ΘX .
Then g̃X := OX ⊗k g becomes a Lie algebroid when we define the bracket by

[f1⊗ ξ1, f2⊗ ξ2] = f1f2⊗[ξ1, ξ2] + f1αO(ξ1)(f2)⊗ ξ2 − f2αO(ξ2)(f1)⊗ ξ1.

The universal enveloping algebra U(g̃X) is isomorphic to OX ⊗k U(g) as an OX -module.
For an arbitrary F ∈ QCoh(X,G), the formula (5.1.10.1) implies that αF induces a morphism

of OX -algebras U(g̃X)→ Endk(F).

5.1.12. Principal bundles. Assume that π : X → Z is a principal G-bundle, so that Z represents
the quotient stack [Wan11, Remark 2.1.2]. Then the equivalence QCoh(G\X) ' QCoh(X,G)

implies that π∗ defines an equivalence of categories QCoh(Z)
∼→ QCoh(X,G). The equivariant

structure is given by the identification (act,pr2) : G×X ∼→ X ×Z X. We would like to describe
the inverse functor πG• : QCoh(X,G)→ QCoh(Z). Our notation follows [BL94].

Take F ∈ QCoh(X,G). For an open affine subset U ⊂ Z, we know that V = π−1U is an
open affine subset of X stable under the action of G. By flat descent, we can consider F as a
sheaf in the fpqc topology via pullback. That is to say, we have an equalizer diagram

0→ Γ(U, πG• (F))→ Γ(V, π∗πG• (F))⇒ Γ(V ×
U
V,pr∗1π

∗πG• (F)).

By the definition of πG• as the inverse, we have π∗πG• (F) ' F. Additionally since V is a G-

bundle over U , we have (act,pr2) : G×V ∼→ V ×U V . So it remains for us to determine what
the corresponding maps are in the diagram

0→ Γ(U, πG• (F))→ Γ(V,F)⇒ O(G)⊗
k

Γ(V,F).

Now note that we are assuming π∗πG• (F) ' F as G-equivariant sheaves, so the isomorphism
pr∗1π

∗πG• (F) ' pr∗2π
∗πG• (F) corresponds to theG-equivariant structure act∗F ' pr∗2F. Therefore

the two maps Γ(V,F) ⇒ O(G)⊗Γ(V,F) correspond to m 7→ 1⊗m and the comodule map
described in 5.1.5. Thus Γ(U, πG• (F)) can be described explicitly as the space of G-invariant
sections Γ(V,F)G under the G-action on F. This also explains the notation: we can write
πG• (F) = (π•F)G.

5.2. Equivariant twisted differential operators. In this subsection, we will assume X and
G are both smooth6. Then the quotient stackG\X is a smooth algebraic k-stack, andX → G\X
is a smooth covering.

We define a G-equivariant tdo to be the data of a tdo D on X together with a morphism

of OG×X -algebras γD : act]D → pr]2D such that the diagram (5.1.2.1) commutes, where we
replace pullbacks of O-modules with pullbacks of tdo’s. The same discussion as for quasi-
coherent sheaves shows that this is equivalent to giving a tdo on the quotient stack G\X (see
2.3.3 for the definition of a tdo on an algebraic stack).

5.2.1. Let D be a G-equivariant tdo on X. Recall that DG�O D
∼→ pr]2D (Example 2.2.6),

where DG is the sheaf of ordinary differential operators on G. Note that pr∗2D ' OG�O D

naturally embeds into DG�O D as an OG×X -subalgebra, and it is the centralizer of pr−1
1 OG =

OG�k k ⊂ OG×X in pr]2D. Define the isomorphism

exch = (pr1, act) : G×X → G×X : (g, x) 7→ (g, gx)

6In fact, since we are in characteristic 0, Cartier’s theorem [DG70, II, §6, 1.1] implies that G is automatically
smooth.
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and observe that act = pr2 ◦ exch. Since exch is an isomorphism, the pullback exch∗ simply

changes the action of the ring OG×X , and we have act]D ' exch∗pr]2D. Therefore γD is a
morphism of OG×X -algebras

OG×X ⊗
exch−1(OG×X)

exch−1(pr]2D)
∼→ pr]2D.

We note the similarity of this setup with the one described in 5.1.6.
Now since pr1 = pr1 ◦ exch, we see that pr−1

1 OG naturally lives in both sides. The pr−1
1 OG-

centralizer on the left is exch∗pr∗2D ' act∗D, so γD induces an isomorphism

τD : act∗D
∼→ pr∗2D.

Since the embedding pr∗2D ⊂ pr]2D is right inverse to the action of pr]2D on 1⊗ 1 ∈ pr∗2D, we
see that τD is a γD-isomorphism with τD(1⊗ 1) = 1⊗ 1.

If we consider one of the projections prij : G×G×X → G×X, then pr∗ij(τD) is naturally a

pr]ij(γD)-morphism sending 1⊗ 1⊗ 1 7→ 1⊗ 1⊗ 1. Therefore τD satisfies the cocycle condition
since γD does. This gives D the structure of aG-equivariant quasi-coherent sheaf. Consequently,
we get a Lie algebra action αD : g→ End(D).

Example 5.2.2. Let L be a G-equivariant line bundle on X. Then

γDL
:= (τL ◦ • ◦ τ−1

L ) : Dact∗L
∼→ Dpr∗2L

makes DL a G-equivariant tdo by Example 2.2.4. Since DL is then also G-equivariant as a
quasi-coherent sheaf, we have a Lie algebra action αDL

: g → Endk(DL). On the other hand,
we have the action αL : g→ Endk(L) coming from the G-equivariance of L. Since L is locally
isomorphic to OX and we know αO lands in Γ(X,ΘX), we deduce from (5.1.10.1) that αL sends
g → Γ(X,F1DL). We claim that αDL

= adαL = [αL, •]. To see this, fix ξ ∈ g and pull back
τDL

along 1 + ε · ξ : Spec k[ε]→ G so we are considering sheaves on X[ε]. Since τDL
is defined

as conjugation by τL, the standard calculus computation over k[ε] proves the claim.

Example 5.2.3. By the previous example and Example 5.1.8, we have a G-equivariant struc-
ture on DX . Let us give an explicit description of the G-action on Γ(X,DX). Take a dif-
ferential operator ∂ ∈ Γ(X,DX) = Dif(OX ,OX) and a geometric point g ∈ G(k). Since
τDX

= (τO ◦ • ◦ τ−1
O ), we see that the new operator g · ∂ sends a function f ∈ Γ(X,OX) to the

regular function x 7→ (g · ∂(g−1 · f))(x) = ∂(g−1 · f)(g−1x).

5.2.4. Differential operators on G. Let us provide some motivation for why the Lie algebra will
play such a central role in our future discussions. Consider the commuting actions of G on itself
by left and right translations. These give Lie algebra morphisms

α` : g→ Γ(G,DG)← g : αr

whose images commute. In addition, the image of α`O is G-invariant with respect to the right
G-equivariant structure and vice versa. This can be seen at the level of G(S[ε])-points or simply
by noting that the left (resp. right) action comes from evaluating mult∗ : O(G)→ O(G)⊗O(G)
on the first (resp. second) coordinate.

Before proceeding, let us check that these morphisms are the standard ones as described in,
e.g., [Hum75, 9.2]. Take ξ ∈ g, a function f ∈ Γ(G,OG), and geometric points g, x ∈ G(k). Let
∆ : Γ(G,OG) → O(G)⊗Γ(G,OG) be the comodule map with respect to right translations; so
∆(f)(g, x) = f(xg). By definition, αr(ξ)(f) is the function sending x 7→ ξ(f(x•)) = ξ(x−1 · f),
which is the usual map that associates a left invariant vector field to ξ.

Now consider the induced morphisms of OG-algebras

α` : U(g̃`G)→ DG ← U(g̃rG) : αr.
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Proposition 5.2.5. The maps α` and αr are isomorphisms.

Proof. We will deal with the left case. By taking the associated graded modules, we have a
map OG⊗k grU(g)→ SymOG

(ΘG). Since the composition

OG⊗
k

Symk(g)� OG⊗
k

grU(g)→ SymOG
(ΘG)

is an isomorphism, we deduce that both of the intermediate arrows are also isomorphisms. In
particular, Sym(g) ' grU(g), so we have proved the PBW theorem as a bonus. �

Corollary 5.2.6. We have canonical isomorphisms U(g) ' κ(1)⊗OG DG ' Dist(G).

We therefore see that in characteristic 0, the Lie algebra completely determines Dist(G),
so we may focus our attention on it. This is not the case in positive characteristic, where
the Lie algebra plays less of a role and we do need to consider all infinitesimal neighborhoods
(cf. [Jan03, Chapter 7]).

Proposition 5.2.5 says that the differential operators DG are determined by g through the

universal enveloping algebra of the Lie algebroid corresponding to either α` or αr. Since pr]2D '
DG�O D, this motivates us to find an alternative characterization of G-equivariant tdo’s in
terms of Lie algebra actions.

5.2.7. Let D be a G-equivariant tdo on X and put L = LieD. Since exch = (pr1, act) is an
isomorphism, the canonical map (dpr1, dact) : ΘG×X → pr∗1ΘG× act∗ΘX is an isomorphism
of OG×X -modules. Therefore act]L ' pr∗1ΘG× act∗L as OG×X -modules, and the anchor

corresponds to the composition pr∗1ΘG× act∗L → pr∗1ΘG× act∗ΘX
∼← ΘG×X . Recall from

Proposition 2.2.1 that Lie(act]D) ' act]L. Therefore γD is determined by the restriction

γ : act]L→ pr]2, which is a morphism of Lie algebroids. By the above, this corresponds to

(5.2.7.1) γ : pr∗1ΘG× act∗L→ pr∗1ΘG×pr∗2L

over ΘG×X . For ξ ∈ g, we then have γ(αr(ξ), 0) = (αr(ξ), ig(ξ)) where ig(ξ) is a global section
of Γ(G×X,pr∗2L) ' O(G)⊗k Γ(X,L). We claim that ig(ξ) in fact lies in Γ(X,L). The proof is
a careful inspection of the cocycle condition for γ which is rather technical and may be skipped
by the reader.

Proof. For the sake of readability, let g1, g2 : G×G×X → G and x : G×G×X → X denote
the projections. Then for example id× act = (g1, g2x). The cocycle condition then requires

(g1, g2x)]act]L
(g1,g2x)](γ)

//

∼
��

(g1, g2x)]pr]2L
∼ // (g2, x)]act]L

(g2,x)](γ)
��

(g1g2, x)]act]L
(g1g2,x)](γ)

// (g1g2, x)]pr]2L
∼ // (g1g2, x)pr]2L

to commute. Observe that (g1, g2x)∗(act]L) ' (g1, g2x)∗(pr∗1ΘG× act∗L) ' g∗1ΘG×(g1g2x)∗L.
We also have Cartesian squares

g∗2ΘG× g∗1ΘG×(g1g2x)∗L //

pr23

��

g∗2ΘG× g∗1ΘG×(g1g2x)∗ΘX

pr23

��

ΘG×G×X
∼oo

d(g1,g2x)

��

g∗1ΘG×(g1g2x)∗L // (g1, g2x)∗(pr∗1ΘG× act∗ΘX) (g1, g2x)∗ΘG×X
∼oo
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Hence (g1, g2x)]act]L ' g∗2ΘG× g∗1ΘG×(g1g2x)∗L with anchor given by the top row of the
above diagram. Similar considerations for the other entries give us a reformulation of the
cocycle condition in terms of more familiar objects:

g∗2ΘG× g∗1ΘG×(g1g2x)∗L
a //

d

��

g∗2ΘG× g∗1ΘG×(g2x)∗L
b // g∗1ΘG× g∗2ΘG×(g2x)∗L

c

��

g∗2ΘG×(g1g2)∗ΘG×(g1g2x)∗L
e // g∗2ΘG×(g1g2)∗ΘG×x∗L

f // g∗1ΘG× g∗2ΘG×x∗L

The morphisms a = id×(g1, g2x)∗(γ), c = id×(g2, x)∗(γ), and e = id×(g1g2, x)∗(γ) are all
induced from γ. The transition isomorphism b is a morphism of Lie algebroids compatible with
anchors, so it must swap the g∗i ΘG for i = 1, 2 while fixing (g2x)∗L. The morphism d is the
product of g∗2ΘG× g∗1ΘG ' g∗2ΘG×(g1g2)∗ΘG with id(g1g2x)∗L. Let us describe the first of these.

Define p1, p2 and µ : G×G→ G to be the projections and the action µ(g1, g2) = g2g
−1
1 . Then

g∗1ΘG → (g1g2)∗ΘG is the pullback (g2, g1g2)∗(µ∗ΘG → p∗2ΘG) of the G-equivariant structure
on ΘG induced by µ. Let ∆′ : g → O(G)⊗k g denote the comodule map corresponding to the
adjoint representation. For η ∈ g, write ∆′(η) = Σ fi⊗ η′i for fi ∈ O(G) and η′i ∈ g. Since the
αr(η′i) are left invariant vector fields, we deduce that

(5.2.7.2) d(0, g∗1(αr(η)), 0) = (0,Σ g∗2(fi) · (g1g2)∗(αr(η′i)), 0).

Similarly by left invariance, we see that d(g∗2(αr(ξ)), 0, 0) = (g∗2(αr(ξ)), (g1g2)∗(αr(ξ)), 0).
Lastly f fixes the third coordinate and equals the inverse of d followed by a swap on the
first two coordinates. Hence the commutativity of the diagram implies that

(0, g∗2(αr(ξ)), (g2, x)∗(ig(ξ)) = cba(g∗2(αr(ξ)), 0, 0)

= fed(g∗2(αr(ξ), 0, 0)) = (0, g∗2(αr(ξ)), (g1g2, x)∗(ig(ξ))).

The equality (g2, x)∗(ig(ξ)) = (g1g2, x)∗(ig(ξ)) implies that ig(ξ) ∈ Γ(X,L) by flat descent. �

As a consequence, pr∗1ΘG acts trivially on ig(ξ). Since γ is a morphism of Lie algebroids, we
conclude that ig : g→ Γ(X,L) ⊂ Γ(X,D) is a Lie algebra map. Note that γ restricts to τD on
act∗L → pr∗2L. Since DG ' U(g̃rG) by Proposition 5.2.5, we see that γD is determined by τD
and ig. The next lemma makes this precise.

Lemma 5.2.8. A tdo on the quotient stack G\X is the same as a tdo D on X equipped with
a pair (τD, ig), where τD : act∗D→ pr∗2D is a G-equivariant structure on D as a left (or right)
OX-module and ig : g→ Γ(X,D) is a Lie algebra map such that

(i) τD is a ring homomorphism between the subrings of pr−1
1 OG-centralizers.

(ii) ig is a morphism of G-modules (where g has the adjoint representation).
(iii) The Lie algebra action αD : g→ End(D) induced by τD coincides with ad ig.

Proof. Cf. [BB93, Lemma 1.8.7(i)]. Consider a tdo on G\X. This is the same as a G-equivariant
tdo D on X. Given γD, we have constructed τD and ig in the previous subsections. Since γD
is a map of OG×X -algebras, so is τD. Let us momentarily adopt the notation of the previous
proof, where ∆′ : g → O(G)⊗k g is the comodule map of the adjoint representation and
∆′(η) = Σ fi⊗ η′i for η ∈ g. Using (5.2.7.2), the cocycle condition tells us that

(g∗1(αr(η)), 0, (g2, x)∗(τD)((g2x)∗(ig(η)))) = cba(0, g∗1(αr(η)), 0) = fed(0, g∗1(αr(η)), 0)

= (g∗1(αr(η)), 0,Σ g∗2(fi) · x∗(ig(η′i)))

where we are considering ig(η) ∈ D. Looking at the third coordinate, we have

(g2, x)∗
(
τD(act∗(ig(η)))

)
= (g2, x)∗

(
Σ pr∗1(fi) · pr∗2(ig(η′i))

)
.
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Since (g2, x)∗ is injective by flat descent, this implies (ii). For ξ ∈ g and P ∈ D, we have
γD(exch∗[pr∗1(αr(ξ)),pr∗2P ]) = [pr∗1(αr(ξ)) + pr∗2(ig(ξ)), τD(act∗P )] = 0 since γD is a ring ho-

momorphism. Write τD(act∗P ) = Σ fi⊗Qi for fi ∈ pr−1
1 OG and Qi ∈ pr−1

2 D. Evaluating
the RHS, we have −Σαr(ξ)(fi)⊗Qi = Σ fi⊗[ig(ξ), Qi]. Taking the fiber at 1 ∈ G, we get
αD(ξ)(P ) = −Σ ξ(fi)Qi = (ad ig(ξ))(P ). This proves (iii).

Conversely, suppose we have a tdo D on X with a pair (τD, ig) satisfying (i)-(iii). Since
act]D ' exch∗(DG�O D) ' exch∗(U(g̃rG)�O D), we can define a map of OG×X -modules γD :

act]D → pr]2D in terms of τD and ig. This will be an algebra homomorphism due to the
commutator relations that arise from ig being a Lie algebra map together with conditions (i)
and (iii). Our previous discussions show that γD satisfies the cocycle condition since τD does
and ig lands in Γ(X,D) and satisfies (ii). Therefore we have made D into a G-equivariant tdo.
Clearly the above constructions are mutually inverse. �

5.2.9. Equivariant D-modules. Let D, τD be a G-equivariant tdo on X, which also defines a tdo
on the quotient stack G\X. We define a G-equivariant D-module on X to be a D-module M

together with a τD-isomorphism τM : act∗M
∼→ pr∗2M such that M is G-equivariant as a quasi-

coherent sheaf. From 2.3.3, this is equivalent to defining a D-module on G\X. Here we recall

that act∗M, pr∗2M are modules over the tdo’s act]D, pr]2D respectively, and a τD-morphism is

a morphism of pr]2D-modules where pr]2D acts on act∗M through τ−1
D . Consider pr∗2D ⊂ pr]2D

as a subalgebra. If τM is only pr∗2D-linear in the definition above, then we say that M is a
weakly G-equivariant D-module.

Example 5.2.10. Suppose X = Spec k is a point and take a character ig ∈ g∗ defining a
G-equivariant tdo D as in Example ??. A weakly G-equivariant D-module is simply a G-
representation V . In order for V to be G-equivariant, we require τV : OG⊗V → OG⊗V to be
a morphism of DG-modules. This is equivalent to requiring αV = ig.

5.3. Quotients by subgroups. Let H ⊂ G be a closed subgroup. Then the quotient stack
G/H is representable by a quasi-projective G-scheme X, so π : G→ X is a (right) principal H-

bundle [DG70, III, §3, Theorem 5.4]. One has an isomorphism of quotient stacks (·/H)
∼→ G\X

sending anH-bundle P to the twist P
H
×G (see [Wan11, Lemmas 2.1.1, 2.4.2]). As a consequence,

we have the following equivalences:

QCoh(X,G)
∼← QCoh(G\X)

∼→ QCoh(·/H)
∼→ Rep(H).

Lemma 5.3.1. There is an equivalence of categories between (left) G-equivariant sheaves on
X and (right) H-representations defined by taking the fiber at the point π(1) ∈ X(k).

Proof. If we start with the trivial bundle H over k, then the twist by G is just the trivial bundle
G over k. Therefore we have the following 2-commutative diagram

G×X
act //

pr2

// X
G×X→X

// G\X

H
//
//

h 7→(h,π(1))

OO

· H //

π(1)

OO

·/H

∼

OO

Consider F ∈ QCoh(X,G). From the definitions, it follows that the H-equivariant sheaf on the
point is defined to be the pullback of F along {π(1)} ↪→ X, i.e., the fiber F⊗OX κ(π(1)). We also
see that the H-equivariant structure is gotten by pulling back τF along the map H → G×X
defined in the diagram above. �
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The inverse functor L(•) : Rep(H)→ QCoh(X,G) can be constructed explicitly as L(V ) =
(π•OG⊗V )H , i.e., for an open subset U ⊂ X,

Γ(U,L(V )) = {f ∈ Γ(π−1U,OG)⊗V | f(gh) = h−1f(g) for g ∈ π−1U, h ∈ H},
where we are considering the action on sections of OG induced from the G-equivariant structure
of right translations. This is a sheaf, and we can give it a G-equivariant structure by left
translations (cf. [Jan03, 5.8]).

5.3.2. Using the same isomorphisms of stacks as before, we also have from our previous dis-
cussions the following equivalence for tdo’s.

Theorem 5.3.3. The G-equivariant tdo’s on X are classified by λ ∈ h∗ such that λ([h, h]) = 0.

Given λ, the corresponding tdo can be explicitly constructed as

AX(λ) := U(g̃X)/ Σ
ξ∈g̃X

U(g̃X)(ξ − λ(ξ)).

The G-equivariant AX(λ)-modules on X are then equivalent to H-modules where h acts by λ.
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