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Introduction

The goal of these notes is to provide an overview of some facts from local algebra,
and more importantly, how they relate to algebraic geometry. The content is based
on the course Math 233B. Theory of Schemes, taught by Dennis Gaitsgory in Spring
2010 at Harvard1. We will try to keep the exposition succinct, citing books for
proofs whenever possible. For the local algebra, we will cite mainly [Mat80, Mat89].
We find that [Mat80] is easier to read, but [Mat89] is better typeset and sometimes
provides more general results. We will only provide proofs that are not prevalent
in the literature, or provide alternative proofs that use more high-tech machinery.
In particular, we will assume knowledge of derived categories (cf. [Wei94]).

Date: March 25, 2012.
1See also the lecture-by-lecture notes TeXed by Iurie Boreico.
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0.1. Associated primes. Let A be a commutative ring and M an A-module.

Definition 0.1.1. A prime ideal p of A is an associated prime ideal of M if p =
ann(x) for some x ∈M .

The theory of associated primes only really works when A is noetherian.

Proposition 0.1.2. Let A be noetherian and M a finitely generated2 A-module.
Then p is an associated prime of M if and only if it is an irreducible component of
the support of a submodule of M .

Proof. See [Mat80, (7.D) Theorem 9, (7.F) Lemma] or [Mat89, Theorem 6.3, The-
orem 6.5]. �

Corollary 0.1.3. If A is noetherian and M finitely generated, then there exists a
filtration 0 ⊂ M1 ⊂ · · · ⊂ Mn = M such that Mi/Mi−1 ' A/pi for primes pi, and
AssM ⊂ {pi}.

Proof. See [Mat80, (7.E) Theorem 10] or [Mat89, Theorem 6.4]. �

Corollary 0.1.4. If A is noetherian, then a finitely generated A-module has finitely
many associated primes.

Corollary 0.1.5. If A is noetherian, then the set of zero-divisors of M is the union
of all associated primes of M .

Proof. See [Mat80, (7.B) Corollary 2] or [Mat89, Theorem 6.1(ii)]. �

Corollary 0.1.6. Let A be noetherian and a ⊂ A an ideal. Then the following are
equivalent:

(1) a is not contained in any associated prime,
(2) Ma := {x ∈M | ax = 0} = 0,
(3) there exists f ∈ a not a zero-divisor of M .

Proof. Use prime avoidance and the previous corollary. �

Corollary 0.1.7. The map M → ⊕p∈Ass(M)Mp is injective.

Proof. If x ∈ M lies in the kernel, then ann(x) is not contained in any associated
prime. Hence x = 0 by Corollary 0.1.6. �

0.2. Depth. Let A be a commutative ring, and M an A-module.

Definition 0.2.1. We say f1, . . . , fr ∈ A form an M -regular sequence if fi is not
a zero-divisor on M/(f1, . . . , fi−1)M and M 6= (f1, . . . , fr)M .

0.2.2. The Koszul complex. For an element f ∈ A, we define the complex

K(f) = (A
f→ A)

living in degrees −1 and 0. For f1, . . . , fr ∈ A and an A-module M , define the
Koszul complex K(f1, . . . , fr,M) to be the tensor product of complexes

K(f1)⊗
A
· · · ⊗

A
K(fr)⊗

A
M.

2The proposition is still true if M is not finitely generated, but we replace “irreducible com-
ponent of” with “minimal element of”, but this does not has as nice a geometric interpretation.
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Denote the cohomology of this complex by

Hi(f1, . . . , fr,M) := Hi(K(f1, . . . , fr,M)).

Then H0(f1, . . . , fr,M) = M/(f1, . . . , fr)M and K(f1, . . . , fr,M) ' ∧•(Ar)⊗AM
can be seen explicitly as

0→ ⊕
i1<···<ir

M → · · · → ⊕
i1<i2

M → ⊕
i=1,...,r

M →M.

The main point of Koszul complexes is this:

Theorem 0.2.3. If f1, . . . , fr is an M -sequence, then Hi(f1, . . . , fr,M) = 0 for
i > 0. Conversely if (A,m) is a noetherian local ring, f1, . . . , fr ∈ m, and M is
finitely generated, then H1(f1, . . . , fr,M) = 0 implies f1, . . . , fr is M -regular.

Proof. See [Mat89, Theorem 16.5]. �

We also mention that besides the Koszul complex, there is another way of
thinking about regular sequences when A is noetherian, called quasi-regularity
(cf. [Mat80, (15.B)] or [Mat89, Theorem 16.3]).

Definition 0.2.4. Let A be a noetherian ring, M a finitely generated A-module,
and a ⊂ A an ideal such that aM 6= M . Then the a-depth of M is

depthA,a(M) := inf{i | ExtiA(A/a,M) 6= 0}.

(By convention, the depth is ∞ if aM = M .)
When (A,m) is a local ring, depth refers to depthA,m.

0.2.5. Assume the conditions of Definition 0.2.4 for the rest of this section.
Note that deptha(M) = 0 if and only if Ma 6= 0. So Corollary 0.1.6 says that if

deptha(M) > 0, then there exists f ∈ a that is M -regular.

Lemma 0.2.6. Suppose f ∈ a is M -regular. Then depth(M) = depth(M/fM)+1.

Proposition 0.2.7. The following are equivalent:

(1) deptha(M) ≥ n,
(2) ExtiA(N,M) = 0 for i < n and any finitely generated A-module N with

supp(N) ⊂ V (a),
(3) there exists a finitely generated A-module N with supp(N) = V (a) such

that ExtiA(N,M) = 0 for i < n,
(4) for any M -sequence f1, . . . , fi ∈ a with i < n, there exists fi+1 ∈ a extend-

ing the regular sequence,
(5) there exists an M -sequence of length n.

Proof of lemma and proposition. See [Mat80, (15.C) Theorem 28] or [Mat89, The-
orem 16.6]. �

Lemma 0.2.8. A prime p lies in Ass(M) if and only if Mp has depth 0.

Proof. Follows from [Mat89, Theorem 6.2]. �

Proposition 0.2.9. We have deptha(M) = inf{depth(Mp) | p ∈ V (a)}.

Proof. See [Mat80, (15.F) Proposition]. �
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Lemma 0.2.10. Let ϕ : B → A be a homomorphism of noetherian rings and M
an A-module that is finitely generated over B. Then for a prime q ∈ Spec(B),

depthB,q(M) = inf{depthA,p(M) | p ∈ Spec(A⊗
B
κ(q))}.

Proof. Let us first prove the case where A is finitely generated as a B-module.
Localizing at q, we may assume that (B, n) is a local ring. If f1, . . . , fr ∈ n is
M -regular, then ϕ(f1), . . . , ϕ(fr) ∈ mAm is Mm-regular for any m ∈ Spec(A/nA).
This shows the ≤ direction.

Conversely, suppose that depthAm
(Mm) ≥ r for all m contracting to n. Consider

the adjunction

ExtiB(κ(n),M) = HomD(B-mod)(κ(n),M [i]) ' HomD(A-mod)(A
L
⊗
B
κ(n),M [i]).

Let Nj = TorBj (A, κ(n)), which is a finitely generated A-module supported on

Spec(A/nA). Then ExtiA(Nj ,M)m ' ExtiAm
((Nj)m,Mm) = 0 for m ∈ Spec(A/nA)

and i < r by Proposition 0.2.7; hence ExtiA(Nj ,M) = 0. Applying HomD(A-mod)

to the distinguished triangle

τ<j(A
L
⊗
B
κ(n))→ τ≤j(A

L
⊗
B
κ(n))→ Hj(A

L
⊗
B
κ(n)) = Nj ,

we deduce that HomD(A-mod)(A⊗L
B κ(n),M [i]) = 0 since A⊗L

B κ(n) ∈ D−(A-mod).

Therefore ExtiB(κ(n),M) = 0 for i < r, which proves the ≥ direction.
Now we drop the assumption that B is finitely generated as an A-module, but

we still assume that M is finitely generated as a B-module. By what we have
just shown, we can replace B → A by the inclusion B/annB(M) ↪→ A/annA(M).
Then A ↪→ EndB(M) is an injection, which implies that A is finitely generated as
a B-module, bringing us back to the first case. �

Lemma 0.2.11 (Ischebeck). Let A be a noetherian local ring and M,N non-zero
finitely generated A-modules. Then ExtiA(N,M) = 0 for i < depth(M)− dim(N).

Proof. See [Mat80, (15.E) Lemma 2] or [Mat89, Theorem 17.1]. �

Theorem 0.2.12. Let A be a noetherian local ring. Then depth(M) ≤ dim(A/p)
for any p ∈ Ass(M). In particular, depth(M) ≤ dim(M) when M 6= 0.

Proof. See [Mat80, (15.E) Theorem 29] or [Mat89, Theorem 17.2]. �

See §2 for more on depth.

1. Regular local rings and their cohomological properties

1.1. Notions of dimension. Let A be a ring (for the moment we allow non-
commutativity), and M an A-module (all modules will be left modules).

Definition 1.1.1. The projective (resp. injective, Tor) dimension of M is the
minimal integer n (or ∞) such that ExtiA(M,−) (resp. Exti(−,M), Tori(−,M))
vanishes for all i > n.

Lemma 1.1.2. If 0→M ′ → P →M → 0 is a short exact sequence of A-modules
such that P is projective, then proj dim(M ′) = proj dim(M)− 1.

Lemma 1.1.3. The following are equivalent:
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(1) proj dim(M) ≤ n,
(2) there exists a projective resolution of M of finite length ≤ n,
(3) for an exact sequence Pn−1 → · · · → P1 → P0 →M → 0 with Pi projective,

the ker(Pn−1 → Pn−2) is projective.

Proof. See [Mat89, Appendix B]. �

The analogous results hold for injective and Tor dimension. Note that projective
dimension is at least the Tor dimension.

Definition 1.1.4. The (left) global or (co)homological dimension of A is defined
by

gl dim(A) := sup{proj dim(M) |M is a left A-module}.

Proposition 1.1.5. The following are equivalent:

(1) gl dimA ≤ n,
(2) proj dim(M) ≤ n for every finitely generated A-module M ,
(3) inj dim(N) ≤ n for every A-module N .

If A is (left) noetherian, then the above are also equivalent to:

(3) ExtiA(M,N) = 0 (i > n) for all finitely generated A-modules M,N .

Proof. See [Mat80, §18] or [Mat89, §19, Lemma 2]. �

Lemma 1.1.6. Let A be a (left) noetherian ring of finite global dimension. For a
finitely generated A-module M , its projective dimension is equal to grade(M), the
minimal integer n such that ExtiA(M,A) = 0 for all i > n.

Proof. Suppose that grade(M) = 0. Let N be an A-module. Since A has finite
global dimension, there is a finite projective resolution P • → N . Since a projective
module is a direct summand of a free module and ExtiA(M,−) commutes with
direct sums, we deduce that ExtiA(M,Pn) = 0 for i > 0. Thus P • ∈ Kb(A-mod)
is an RHom(M,−)-acyclic resolution of N , so RHom(M,N) ' Hom(M,P •) in
D(Ab). Taking the ith cohomology gives ExtiA(M,N) = 0 for i > 0 since P • lives
in non-positive degrees.

The lemma now easily follows by induction. �

1.2. Dualizing functor. Let A be a (left) noetherian ring with gl dim(A) ≤ n.
We consider the triangulated subcategory Db

fg(A-mod) ⊂ D(A-mod) consisting of
complexes with bounded, finitely generated cohomology.

Lemma 1.2.1. For every M• ∈ Db
fg(A-mod), there exists a finite complex P •

consisting of finitely generated projective A-modules and a quasi-isomorphism

P • →M•.

Proof. By truncation, we can assume M• is a finite complex, say living in degrees
[−k, 0]. Then there exists P • ∈ D−fg(A-mod) with a quasi-isomorphism P • →M•.

Since gl dim(A) ≤ n, we see that ker(P−k−n+1 → P−k−n+2) will be projective, so
we can truncate P • to prove the claim. �

Corollary 1.2.2. There is an equivalence of triangulated categories

Db
fg(A-mod)← Kb

proj,fg(A-mod).
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Proposition 1.2.3. The derived Hom

DA→Aop := RHom(−, A) : Db
fg(A-mod)→

(
Db

fg(Aop-mod)
)op

is a dualizing functor, satisfying DAop→A ◦ DA→Aop = id.

Proof. By Corollary 1.2.2, we can work with bounded finitely generated projective
complexes. For such a complex P • = (P−k → · · · → P 0), we see that D(P •) =
(P̌ 0 → · · · → P̌−k), where Q̌ := HomA(Q,A). Everything is now clear since
projective modules are direct summands of free modules. �

Remark 1.2.4. Observe from the above proof that if M• is a complex living coho-
mologically in degrees [a, b], then D(M•) lives cohomologically in degrees [−b, n−a].

Proposition 1.2.5. There is a natural quasi-isomorphism in the derived category

D(N)
L
⊗
A
M → RHom(N,M)

for N ∈ Db
fg(A-mod) and M ∈ D(A-mod).

Proof. Using Corollary 1.2.2, we can replace N by some P ∈ Kb
proj,fg(A-mod).

Now because projective modules are direct summands of free modules, we have
a natural isomorphism Hom(P,M) ' P̌ ⊗AM (this is even true at the level of
bicomplexes). �

1.3. Local rings. From now on, all rings will be assumed to be commutative.
The cohomological picture simplifies when we consider noetherian local rings. Let
(A,m, k) be a commutative noetherian local ring.

Proposition 1.3.1. Let M be a finitely generated A-module. The following are
equivalent:

(1) TorAn+1(k,M) = 0,
(2) Tor dim(M) ≤ n,
(3) proj dim(M) ≤ n.

Proof. See [Mat80, (18.B) Lemma 4] or [Mat89, §19, Lemma 1]. �

Corollary 1.3.2. We have gl dim(A) ≤ n if and only if Torn+1(k, k) = 0.

Proof. See [Mat80, (18.B) Theorem 41] or [Mat89, §19, Lemma 1]. �

Theorem 1.3.3 (Auslander and Buchsbaum). Let A be a noetherian local ring and
M a finitely generated A-module with proj dim(M) <∞. Then

proj dim(M) + depth(M) = depth(A).

Proof. See [Mat89, Theorem 19.1] or [Mat80, §16, Exercise 4]. �

1.4. Serre’s theorem on regular local rings.

Definition 1.4.1. A local ring (A,m, k) is regular if it is noetherian and

dimk m/m
2 = dim(A).

If A is a regular local ring of dimension n, then

(1) there exists an A-regular sequence f1, . . . , fn ∈ m,
(2) depth(A) = n,
(3) Exti(k,A) = 0 for i > n
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(cf. [Mat80, (17.F) Theorem 36] or [Mat89, Theorem 14.2]).

Lemma 1.4.2. A regular local ring is an integral domain.

Proof. See [Mat89, Theorem 14.3] or [Mat80, (17.F) Theorem 36] (a stronger result
is proved here). �

1.4.3. We remark that applying Proposition 1.2.5 to k,M and using the Koszul
complex shows that TorAi (k,M) ' Extn−i(k,M) (non-canonically) for a regular
local ring A of dimension n.

Theorem 1.4.4 (Serre). A noetherian local ring is regular of dimension n if and
only if it has finite global dimension equal to n.

Proof. The “only if” direction is proved in the standard way using the Koszul
complex. The “if” direction can be proved using minimal resolutions (cf. [Mat80,
(18.G) Theorem 45] or [Mat89, Theorem 19.2]), but we will provide a more “high-
tech” proof due to Gaitsgory.

Let (A,m, k) be a noetherian local ring with global dimension n. We wish to
show that A is regular. We claim3 that depth(A) ≥ n. Let i be the minimal
integer such that Exti(k,A) 6= 0. Suppose for the sake of contradiction that i < n.
Consider D(k) ∈ D(A-mod). We have Hi(D(k)) = ExtiA(k,A), which is a finite
dimensional k-vector space. Applying D again, we have a distinguished triangle

D(τ>iD(k))→ D(D(k))→ D(Hi(D(k))[−i])
By the assumption on the global dimension, τ>iD(k) lives cohomologically in de-
grees i + 1 ≤ n, so Remark 1.2.4 says Hj(D(τ>iD(k))) = 0 for j ≥ n − i. Since
D(D(k)) ' k, the long exact sequence gives

Hn−i(D(Hi(D(k))[−i])) = ExtnA(Hi(D(k)), A) = 0,

which implies ExtnA(k,A) = 0. Lemma 1.1.6 implies that proj dim(k) = gl dim(A) <
n, a contradiction.

We now prove that A is regular by induction on dim(A). If n = 0, then k is
a free A-module, so A must be a field. Now suppose depth(A) ≥ n > 0. Then
m /∈ Ass(A), so by prime avoidance we can choose f ∈ m not contained in m2 or
any associated prime of A (hence f is A-regular). By the induction hypothesis, it
will suffice to show that A′ := A/fA also has finite global dimension.

Let N be an A′-module. By (an easy version of) the projection formula, we see
that

k
L
⊗
A
N ' (k

L
⊗
A
A′)

L
⊗
A′
N

in D(A′-mod). We will show that in this derived category, k⊗L
AA
′ contains k as

a direct summand. This would imply by the above formula that TorA
′

i (k,N) is a

direct summand of TorAi (k,N), proving that k has finite projective dimension as
an A′-module.

Since we have a two-step free resolution A
f→ A of A′ as an A-module, it follows

that TorAi (M,A′) = 0 for i > 1 and TorA1 (M,A′) = Mf for any A-module M .
In particular, any A-module without f -torsion is acyclic with respect to −⊗L

AA
′.

Hence m→ A is an acyclic resolution of k, and we deduce that k⊗L
AA
′ is represented

by the complex (m⊗AA
′ → A′). If we choose some k-linear map m/m2 � k sending

3This follows from Theorem 1.3.3, but let us not use it.
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the image of f to 1, then the composition m⊗AA
′ � m/m2 � k defines a quasi-

isomorphism (
m⊗

A
A′ → A′

)
→ k[1]⊕ k,

providing the desired direct sum. �

Corollary 1.4.5. If A is a regular local ring, then Ap is regular for any p ∈ SpecA.

1.5. Cohomology of D when global dimension is finite.

Definition 1.5.1. A regular ring is a noetherian ring such that the localization at
every prime (equivalently maximal) ideal is a regular local ring.

Proposition 1.5.2. Let A be a regular ring of finite dimension and M a finitely
generated A-module. Then we have the following:

(1) codim supp(ExtiA(M,A)) ≥ i for all i,
(2) ExtiA(M,A) = 0 for i < codim supp(M),
(3) we have equality in (1) when i = codim supp(M).

The codimension of a closed subscheme is the height of the corresponding ideal.

Proof. (1) Take p in the support of ExtiA(M,A). Then since M is finitely generated,

ExtiA(M,A)p ' ExtiAp
(Mp, Ap) 6= 0

implies that i ≤ gl dim(Ap) = dim(Ap).

(2) Since codim supp(M) ≤ codim supp(Mp), it suffices to prove the claim for a
regular local ring (A,m, k). We proceed by induction on n = dim(A). If n = 0,
there is nothing to prove. Let i be the smallest integer such that ExtiA(M,A) 6= 0,
and set N = ExtiA(M,A). By the induction hypothesis, supp(N) = Ass(N) = {m},
so N is an extension of copies of k. In particular, D(k) ' k[−n] implies that D(N)
lives cohomologically in degree n. We have a non-zero map N [−i] → D(M), so
applying D gives a non-zero map

M ' D(D(M))→ D(N [−i]).

However by what we just remarked, the right hand side lives cohomologically in
degree n− i > 0, so this map must be zero, a contradiction.

(3) As in (2), we reduce to the case when A is local, and now supp(M) = {m}. We
want to show that ExtnA(M,A) 6= 0, where n = dim(A). If not, then (2) and the
definition of global dimension imply that D(M) is zero in the derived category, a
contradiction. �

The proposition shows that D(M) lives cohomologically between codim supp(M)
and dim(A), with the supports of the cohomologies getting smaller as you increase
the degree.

2. Depth

2.1. Property (Sk). Let A be a commutative noetherian ring and M a finitely
generated A-module. Consider the affine noetherian scheme X := supp(M). Then
we can think of M as an OX -module, and Lemma 0.2.10 says that this does not
affect the depth. (So when working with M we can replace A with OX .)
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Lemma 2.1.1. Let Y ⊂ X be a closed subscheme and U
j
↪→ X its complement.

Consider the canonical map M → Rj∗j
∗(M) in D(X) := D(OX -mod). 4

Then the map M → j∗j
∗(M) is injective if and only if depth(Mp) ≥ 1 for all

p ∈ Y . For k ≥ 2, the map M → τ≤k−2(Rj∗j
∗(M)) is a quasi-isomorphism if and

only if depth(Mp) ≥ k for all p ∈ Y .

Proof. Let M ′ ∈ D(X) denote the cone of M → Rj∗j
∗(M), so we have a distin-

guished triangle
M → Rj∗j

∗(M)→M ′.

Since Rj∗ is fully faithful, M ′ has cohomology supported in Y . The long exact
sequence tells us that

Hk−2(M ′) '


ker(M → j∗j

∗(M)) k = 1

coker(M → j∗j
∗(M)) k = 2

Hk−2(Rj∗j
∗(M)) k ≥ 3.

We see that the lemma is equivalent to showing, for k ≥ 1, that M ′ lives in coho-
mological degrees ≥ k − 1 if and only if depth(Mp) ≥ k for all p ∈ Y .

We proceed by induction on k ≥ 1. Suppose that M ′ lives in cohomological
degrees ≥ k−2 and depth(Mp) ≥ k−1 for all p ∈ Y . Then N := Hk−2(M ′) is non-
zero if and only if HomAp

(κ(p), Np) 6= 0 for some5 prime p ∈ Y . The base change

isomorphism6 tells us that everything mentioned so far commutes with localization
at p, so we reduce to the case where (A,m, κ) is a local ring. For any i, adjunction
gives HomD(X)(κ,Rj∗j

∗(M)[i]) = 0, since j∗(κ) = 0. Applying HomD(X)(κ,−) to
the distinguished triangle above therefore shows that

HomA(κ,N) ' HomD(X)(κ,M
′[k − 2]) ' HomD(X)(κ,M [k − 1]) = Extk−1OX

(κ,M),

which is non-zero if and only if depth(M) ≤ k − 1. This completes the inductive
step, proving the lemma. �

In the course of proving the lemma, we also showed the following:

Corollary 2.1.2. Let Y = V (p) for a prime p. Then M → τ≤k−2(Rj∗j
∗(M))

is a quasi-isomorphism (resp. M → j∗j
∗(M) is injective in the k = 1 case) when

localized at p if and only if depth(Mp) ≥ k.

Corollary 2.1.3. Let k ≥ 0 be an integer. The following are equivalent:

(1) For any prime p ∈ X such that dim(Mp) ≥ k, the depth of Mp is ≥ k.

(2) For any open U
j
↪→ X whose complement has codimension ≥ k, the map

M → τ≤k−2(Rj∗j
∗(M)) is a quasi-isomorphism (resp. M → j∗j

∗(M) is
injective for k = 1).

(3) For any countably generated OX-module N with codim(supp(N), X) ≥ k, 7

we have ExtiOX
(N,M) = 0 for i < k.

4Since X is an affine noetherian scheme, we do not need to worry about distinguishing between

the derived categories of OX -modules and quasi-coherent sheaves. Here Rj∗ : D(U) → D(X) is
the right adjoint of j∗, and it is fully faithful since U is a subspace of X.

5Any prime p minimal in supp(N) will do.
6See [FGI+05, Theorem 8.3.2]; the key is that U is quasi-compact.
7We say that a subset Y of X is of codimension ≥ k if for every prime p ∈ Y , the height of p

is ≥ k. Here the condition “countably generated” can be removed if we require ann(N) to have
height ≥ k. We do not know if this last requirement is necessary.
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Proof. The implication (3)⇒ (1) is evident: for a prime p, take N to be A/p. The
equivalence of (1) ⇔ (2) follows immediately from Lemma 2.1.1. Let’s show the
implication (2) ⇒ (3). First, assume that N is finitely generated. Let U ↪→ X be
the complement of supp(N). Then

ExtiOX
(N,M) ' HomD(X)(N, τ

≤k−2(Rj∗j
∗(M))[i])

' HomD(X)(N,Rj∗j
∗(M)[i]) ' HomD(U)(j

∗(N), j∗(M)[i]) = 0,

since i < k − 1 and j∗(N) = 0 (the first isomorphism is an injection when k =
1). Now suppose N is countably generated, i.e., N = lim−→Nj for an exhaustive
chain N0 ⊂ N1 ⊂ · · · of finitely generated submodules. Let M → I• be an
injective resolution in D(X). Then HomOX

(N, In) ' lim←−HomOX
(Nj , I

n), where
the transition maps are surjective since In is injective. In particular, the inverse
system of complexes

{HomOX
(Nj , I

•)}j∈N
satisfies the Mittag-Leffler condition. Upon taking cohomologies, the claim in the
finitely generated case together with [Wei94, Theorem 3.5.8] shows that we have
ExtiOX

(N,M) = 0 for i < k. �

Definition 2.1.4. Let k ≥ 0 be an integer. We say that M has property (Sk) if
for every prime p of A the module Mp has depth at least min{k, dim(Mp)}.

2.1.5. Examples. The condition (S0) is trivial. The condition (S1) holds if and
only if M has no embedded primes (i.e., the associated primes are the irreducible
components of the support of M). A ring A satisfies (R0) and (S1) if and only if
A is reduced. A regular ring satisfies (Rk) and (Sk) for all k ≥ 0. Observe that if
M satisfies (Sk), then it also satisfies the equivalent conditions of Corollary 2.1.3.

Proposition 2.1.6. Assume that M satisfies (S1). Then the image of

M ↪→ ⊕
p∈Ass(M)

Mp

consists of the elements (mp ∈Mp)p∈Ass(M) that satisfy the following property: for
every prime q such that depth(Mq) = 1, we have that (mp)q∈V (p) lies in the image
of the natural map Mq → ⊕q∈V (p)Mp.

Proof. One direction is clear; we prove the other. Take an element (mp) satisfying
the declared property. Let ip : Spec(OX,p) ↪→ X. Consider the collection U of open
subsets U ⊂ X such that (mp) lies in the image of Γ(U,M) → ⊕Γ(U, ip∗i

∗
p(M)).

Then Corollary 0.1.7 implies that there is a unique maximal open (the union) U ∈ U.
The condition on (mp) implies that U contains all primes q with depth(Mq) ≤ 1,
so Lemma 2.1.1 says that M ' j∗j∗(M), and we are done. �

2.2. Serre’s criterion of normality. First, we define normality:

Definition 2.2.1. A ring A is normal if for every prime p of A the localization Ap

is an integrally closed domain.

A normal ring is a direct sum of integrally closed domains (cf. [Mat89, pg. 64,
Remark]). In particular, an integral domain is normal if and only if it is integrally
closed.
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2.2.2. For the rest of this section, A will be a commutative noetherian ring.

Theorem 2.2.3. Let A be a normal noetherian domain. Then A =
⋂

ht(p)=1Ap.

Proof. See [Mat80, (17.H) Theorem 38] or [Mat89, Theorem 11.5]. �

Definition 2.2.4. We say that A has property (Rk) if for every prime p of height
≤ k the local ring Ap is regular.

Theorem 2.2.5 (Serre). A noetherian ring A is normal if and only if it has prop-
erty (R1) and (S2).

Proof. See [Mat80, (17.I) Theorem 39] or [Mat89, Theorem 23.8]. We will give a
different proof of the implication (R1) + (S2)⇒ normal.

Assume that A satisfies (R1) and (S2). Then it is reduced, and for every prime
p of height ≤ 1, the localization Ap is a domain by Lemma 1.4.2. Thus the union Y
of the pairwise intersections of distinct irreducible components of X := SpecA has
codimension ≥ 2; Corollary 2.1.3 implies that A is a direct sum of integral domains.
Hence we reduce to the case where A is a domain.

Let K be the field of fractions of A. Let x ∈ K be integral over A and consider
the extension ring B := A[x] ⊂ K, which is finite as an A-module. Let N := B/A
so we have an extension 0 → A → B → N → 0 of A-modules. Since a DVR
is integrally closed, we have that Ap = Bp for all primes p of height ≤ 1. Thus

codim supp(N) ≥ 2. Now Corollary 2.1.3 implies that Ext1A(N,A) = 0. Therefore
B ' A ⊕N , but B is contained in the fraction field of A, so N must be zero. We
conclude that A is integrally closed. �

2.3. Cohen-Macaulay modules.

Definition 2.3.1. Let A be a noetherian local ring and M a finitely generated A-
module. We say that M is a Cohen-Macaulay (abbreviated CM) module if M = 0
or depth(M) = dim(M). If A itself is CM as an A-module then we call A a
Cohen-Macaulay ring.

By Theorem 0.2.12, we know that depth(M) ≤ dim(M) in general. So as an
example, if A is artinian, then any finitely generated A-module is CM. Also note
that a regular ring is CM.

Theorem 2.3.2. Let (A,m) be a noetherian local ring and M a finitely generated
A-module.

(1) If M is CM and p ∈ Ass(M), then depth(M) = dim(A/p).
(2) If f1, . . . , fr is an M -regular sequence in m, then M is CM if and only if

M/(f1, . . . , fr)M is CM.
(3) If M is CM then Mp is a CM module over Ap for every prime p, and if

Mp 6= 0 then depthA,p(M) = depthAp
(Mp).

Proof. See [Mat80, (16.A) Theorem 30] or [Mat89, Theorem 17.3]. �

Theorem 2.3.3. Let (A,m) be a CM local ring.

(1) For a proper ideal a of A we have

ht(a) = deptha(A) and ht(a) + dim(A/a) = dim(A).

(2) A is catenary.
(3) For any sequence f1, . . . , fr ∈ m, the following are equivalent:
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(a) f1, . . . , fr is A-regular,
(b) ht(f1, . . . , fi) = i for 1 ≤ i ≤ r,
(c) ht(f1, . . . , fr) = r,
(d) f1, . . . , fr is part of a system of parameters of A.

Proof. See [Mat80, (16.B) Theorem 31] or [Mat89, Theorem 17.4]. �

Proposition 2.3.4. Let A be a regular local ring of dimension n and M a finitely
generated A-module. Then M is CM of dimension n if and only if it is free. More
generally, M is CM of dimension k if and only if D(M) has nonzero cohomology
only in degree n− k.

Proof. Since A is regular and hence CM, Theorem 2.3.3(1) implies that

codim supp(M) = dim(A)− dim(M).

The claim now follows from Lemma 1.1.6, Theorem 1.3.3, and Proposition 1.5.2. �

Definition 2.3.5. Let A be a noetherian ring andM a finitely generated A-module.
We say that M is Cohen-Macaulay if the localization Mp is CM for every prime
ideal p of A. By Theorem 2.3.2 this is equivalent to saying that Mm is CM for every
maximal ideal m of A.

Proposition 2.3.6. Let B → A be a homomorphism of noetherian rings and M
an A-module that is finitely generated over B. Then M is CM over A if and only
if it is CM over B.

Proof. As in the proof of Lemma 0.2.10, we may assume that B ↪→ A is an inclusion
and A is integral over B. The claim follows from Lemma 0.2.10 and the going-up
theorem (cf. [Mat80, (5.E) Theorem 5] or [Mat89, Theorems 9.3-4]). �

Corollary 2.3.7. Let k be a field, A a finitely generated k-algebra, and M a finitely
generated A-module. Then M is CM with supp(M) equidimensional 8 of dimension
n if and only if for any finitely generated k-algebra B which is regular and equidi-
mensional of dimension n with a map B → A such that M is finitely generated as
a B-module, M is locally free over it. Moreover, such a B always exists.

Proof. The equivalence of the two statements follows from Propositions 2.3.4 and
2.3.6. By Noether normalization, there exists an inclusion B ↪→ A/ann(M) where
B := k[x1, . . . , xn] satisfies the necessary conditions. �

3. Divisors and line bundles

3.1. Weil divisors. Let X be a noetherian integral scheme which is regular in
codimension one (i.e., every local ring OX,x of dimension one is regular). Let K
denote the field of fractions of X.

Definition 3.1.1. A prime divisor on X is a closed integral subscheme of codi-
mension one. A Weil divisor is an element of the free abelian group DivW (X)
generated by the prime divisors. A Weil divisor D = ΣnY Y is effective if nY ≥ 0
for all prime divisors Y .

8Recall that since k is universally catenary, a scheme X locally of finite type over k is equidi-
mensional of dimension n if and only if dim(OX,x) = n for all closed points x ∈ X (cf. [Mat89,

Theorem 15.6]).
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There is a well-defined map of abelian groups K∗ → DivW (X) sending f to the
divisor of f , defined by

(f) = Σ vY (f) · Y
(cf. [Har77, II, Lemma 6.1]). Such a divisor is said to be principal.

Lemma 3.1.2. If X is normal, we have an exact sequence of abelian groups

0→ Γ(X,OX)∗ → K∗ → DivW (X).

Proof. Note that Γ(U,O∗X) := Γ(U,OX)∗ defines a sheaf of groups O∗X on X. This
allows us to reduce to the case where X = Spec(A) is affine. Then (f) = 0 implies
that f, f−1 ∈

⋂
ht(p)=1Ap = A (using Theorem 2.2.3). �

Definition 3.1.3. The (Weil) divisor class group of X, denoted ClW (X), is the

quotient of DivW (X) by the subgroup of principal divisors.

3.2. Cartier divisors. Let X be an arbitrary scheme.

Definition 3.2.1. An effective Cartier divisor on X is an equivalence class in the
set DivC,+(X) of pairs (L, s) where L is an invertible OX -module (i.e., line bundle
on X) and s : OX ↪→ L is an injective section, where (L, s) ∼ (L′, s′) if there is an
isomorphism ϕ : L→ L′ such that s′ = ϕ ◦ s.

Since an automorphism of L corresponds to an element of Γ(X,OX)∗, the isomor-

phism ϕ above is necessarily unique. We give DivC,+(X) the structure of an abelian
monoid as follows: for two effective divisors (L, s), (L′, s′), the tensor product(

L ⊗
OX

L′, OX
s⊗ s′

↪→ L ⊗
OX

L′
)
∈ DivC,+(X)

has an injective section by flatness of line bundles.
Here is an equivalent definition of effective Cartier divisors: note that an injection

OX ↪→ L is the same as an injection L−1 ↪→ OX (by applying −⊗L−1). Now each
such equivalence class is represented by an ideal sheaf ID ⊂ OX , where D is the
corresponding closed subscheme of X. Thus effective Cartier divisors are the closed
subschemes of X with invertible ideal sheaves.

Define the sheaf9 of abelian monoids DivC,+
X on X by U 7→ DivC,+(U) for an

open subset U ⊂ X. Let DivCX be the group completion of DivC,+
X in the category

of sheaves: this is the sheaf associated to the presheaf sending U to the group
completion of DivC,+(U) (A this presheaf might not be a sheaf!).

Definition 3.2.2. The Cartier divisors DivC(X) on X is the group Γ(X,DivCX).

This definition is a little hard to work with, so we provide an alternative. Con-
sider the sub-sheaf of monoids S(OX) ⊆ OX whose sections on U consist of the reg-
ular elements in Γ(U,OX) (i.e., the sections such that the induced maps OU → OU

are injective). This is a sheaf and not simply a presheaf because injectivity is local.
Let MX denote the sheaf associated to the presheaf U 7→ Γ(U,OX)[Γ(U, S(OX))−1].
For any affine subscheme U ⊂ X, the sections Γ(U,MX) form the total quotient
ring of Γ(U,OU ), but simply taking total quotient rings for arbitrary open subsets
U does not even form a presheaf. Observe that M∗X is the sheaf group completion
of S(OX).

9The gluing axiom is satisfied because of the uniqueness of the isomorphisms in the equivalence
relations noted earlier.
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Proposition 3.2.3. There are natural isomorphisms

(1) S(OX)/O∗X → DivC,+
X of sheaves of abelian monoids, and

(2) M∗X/O
∗
X → DivCX of sheaves of abelian groups.

Proof. (1) We define a map S(OX) → DivC,+
X by sending a regular section s ∈

Γ(U,OU ) to (OU , s) ∈ DivC,+(U). By definition of the equivalence relation on
effective Cartier divisors, we have a kernel sequence

0→ O∗X → S(OX)→ DivC,+
X ,

which induces an injective map S(OX)/O∗X ↪→ DivC,+
X . For any (L, s) ∈ DivC,+(U),

we can refine U to assume L ' OU since L is a line bundle. This shows surjectivity
as sheaves. (2) follows from (1) by taking group completions. �

Finally, we give what is probably the easiest way to think about Cartier divisors.
Define a fractional ideal on X to be an OX -submodule of MX . The functor sending
an open subset U ⊂ X to the abelian group of invertible fractional ideals on U
defines a sheaf Id.invX . We can define a map of sheaves DivCX → Id.invX by
locally sending f ∈ Γ(U,M∗X) to OUf .

Proposition 3.2.4. The map DivCX → Id.invX is an isomorphism.

Proof. See [GD67, Proposition 21.2.6]. �

In particular, DivC(X) is isomorphic to the group of invertible fractional ideals
on X. For a Cartier divisor D on X, we define the invertible fractional ideal OX(D)
such that OX(D)−1 is the image of D under the isomorphism of Proposition 3.2.4.
The inclusion OX(D) ⊂MX induces an isomorphism

s−1D : OX(D) ⊗
OX

MX →MX .

Conversely, suppose we are given a line bundle L on X and a meromorphic trivial-
ization s−1 : L⊗OX

MX ' MX . Then on any open subset U ⊂ X where L ' OU

we have that s|U corresponds to an element of Γ(U,M∗X/O
∗
X). These glue to give

a divisor div(s) ∈ DivC(X).

Proposition 3.2.5. The maps

D 7→ (OX(D), sD), (L, s) 7→ div(s)

give mutually inverse isomorphisms between DivC(X) and the group of equivalence
classes of pairs (L, s).

The proposition essentially brings us back to the very first definition we gave of
effective Cartier divisors.

3.2.6. By Proposition 3.2.3, we have a short exact sequence of sheaves of abelian
groups 0 → O∗X → M∗X → DivCX → 0. By applying sheaf cohomology, this gives a
long exact sequence of abelian groups

0→ Γ(X,O∗X)→ Γ(X,M∗X)→ DivC(X)→ H1(X,O∗X)→ H1(X,M∗X).

Definition 3.2.7. The (Cartier) divisor class group of X, denoted ClC(X), is the

quotient of DivC(X) by the image of Γ(X,M∗X). The Picard group Pic(X) is the
group of isomorphism classes of line bundles on X.
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By [Har77, III, Ex. 4.5], we have an isomorphism H1(X,O∗X) ' Pic(X). If X is an
integral scheme, then M∗X is the constant sheaf with value K∗. A constant sheaf is
flasque, so H1(X,M∗X) = 0.

Corollary 3.2.8. If X is integral, we have an isomorphism ClC(X) ' Pic(X).

3.3. Relating Weil and Cartier divisors. As in §3.1, let X be a noetherian
integral scheme which is regular in codimension one, so that we can talk about
both Weil and Cartier divisors on X. Then MX is the constant sheaf K. Define
the homomorphism

DivC(X)→ DivW (X)

by sending an invertible fractional ideal I ⊂ K on X to ΣY vY (I). For an open
covering {Ui} of X where I|Ui

= OUi
fi, we have vY (I) = vY (fi).

Proposition 3.3.1. Let X be as in §3.1. Then the following are equivalent:

(1) X is normal,

(2) for any open X◦ ⊂ X, the map DivC(X◦)→ DivW (X◦) is injective,
(3) for any open X◦ ⊂ X and Y ⊂ X◦ a closed subscheme of codimension ≥ 2

in X◦, a line bundle on the complement U := X◦ − Y admits at most one
extension to X◦ (i.e., Pic(X◦)→ Pic(U) is injective).

Proof. The implication (1) ⇒ (2) follows from Theorem 2.2.3. Let us show the
implication (1) ⇒ (3). Suppose X is normal and let L be a line bundle on X◦.
Then L satisfies (S2), and Corollary 2.1.3 implies that L ' j∗j

∗(L) where j is the
inclusion U ↪→ X◦.

Next we show that (3) ⇒ (2). Suppose two invertible fractional ideals I, I′ on
X◦ have the same Weil divisor. Then there exists U ⊂ X◦ containing all points of
codimension 1 such that I|U = I′|U inside MU . Assumption (3) implies that there
is an isomorphism I ' I′, and this must be an equality by uniqueness.

We now prove (2)⇒ (1). We may assume that X = Spec(A) is affine, where A
is an integral domain satisfying (R1). Suppose there exists x ∈ K that is integral
over A such that A ( B := A[x]. Let U ⊂ X be the open subset of primes p of
A such that Ap = Bp. Since DVRs are integrally closed, the complement Y has
codimension ≥ 2. Let p be an irreducible component of Y . By Nakayama’s lemma,
the embedding κ(p) ↪→ Bp/pBp is proper. Therefore there exists a meromorphic
function f ∈ (Bp)∗ ⊂ K that is not in (Ap)∗. Let X◦ ⊂ X be an affine open
neighborhood of p that does not intersect V (q) for any height 1 prime q with
nonzero vq(f). Replacing X by X◦, we have a meromorphic function f ∈ K such

that (f) = 0 in DivW (X) and f /∈ A∗. Therefore Af defines an invertible fractional
ideal on X that is trivial as a Weil divisor but non-trivial as a Cartier divisor,
contradicting the hypothesis of (2). We conclude that A = B, i.e., A is integrally
closed. �

3.3.2. Unique factorization domains. As we will see, the comparison of Weil and
Cartier divisors naturally leads to considering UFDs and locally factorial schemes.

Proposition 3.3.3. A noetherian domain is a UFD if and only if every prime
ideal of height 1 is principal.

Proof. See [Mat80, (19.A) Theorem 47] or [Mat89, Theorem 20.1]. �
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Proposition 3.3.4. Let A be a noetherian domain. Then A is a UFD if and only
if A is normal and ClW (A) = 0.

Proof. See [Mat89, pg. 165]. �

Theorem 3.3.5. Let X be a normal noetherian scheme. Then the following are
equivalent:

(1) X is locally factorial (i.e., OX,x is a UFD for every x ∈ X),

(2) DivC(X)→ DivW (X) is an isomorphism,
(3) for every prime divisor Y on X, the corresponding ideal sheaf IY is invert-

ible (i.e., every prime divisor is an effective Cartier divisor).

Proof. See [GD67, Théorème 21.6.9]. Proposition 3.3.3 shows that (1)⇔ (3). The
implication (3) ⇒ (2) is clear given Proposition 3.3.1. Let us show (2) ⇒ (3). Let
Y be a prime divisor on X. By condition (2) and Theorem 2.2.3, there exists an

invertible ideal L ⊂ OX mapping to Y in DivW (X). By considering valuations, one
sees that L ⊂ IY . To show that L = IY , we may assume X = Spec(A) is affine.
Then T := IY /L is supported in codimension ≥ 2, so Corollary 2.1.3 implies that
Ext1OX

(T,L) = 0. Since OX is torsion-free, we have T = 0. �

Theorem 3.3.6. Let X be as in §3.1. Then the following are equivalent:

(1) X is locally factorial.

(2) for any open X◦ ⊂ X, the map DivC(X◦)→ DivW (X◦) is an isomorphism,
(3) for any open X◦ ⊂ X and Y ⊂ X◦ a closed subscheme of codimension ≥ 2

in X◦, a line bundle on the complement U := X◦ − Y admits a unique
extension to X◦ (i.e., Pic(X◦)→ Pic(U) is an isomorphism).

Proof. Proposition 3.3.1 and Theorem 3.3.5 show the equivalence (1) ⇔ (2). If X
is locally factorial, then we have the commutative diagram

DivW (X◦)

∼
��

// // ClW (X◦) ClC(X◦)
∼oo ∼ // Pic(X◦)

��

DivW (U) // // ClW (U) ClC(U)
∼oo ∼ // Pic(U)

where DivW (X◦) ' DivW (U) since Y has codimension ≥ 2. This shows an ex-
tension always exists, and uniqueness follows from Proposition 3.3.1, so we have
proved that (1)⇒ (3).

We now show the implication (3)⇒ (1). Proposition 3.3.1 says that X is normal.

Let D be a prime divisor on X and let U
j
↪→ X be the open subset of points x ∈ X

where the localization ID,x is principal. Then the complement of U is contained inD
and has codimension ≥ 2. By condition (3), there exists a line bundle L on X such
that j∗(L) ' j∗(ID). Replacing L by its image under L ' j∗j∗(L) ' j∗j∗(ID) ⊂ K,
we can assume that L is an invertible fractional ideal. We deduce that L = ID as
in the proof of Theorem 3.3.5. �

3.3.7. A standard application of Weil/Cartier divisors is the fact that for a field
k, we have Z ' Pic(Pn

k ) with 1 7→ O(1).

Proposition 3.3.8. Let S be a normal noetherian scheme. Then S×A1 is also
normal, and the natural map Pic(S) → Pic(S×A1) induced by projection is an
isomorphism.
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Proof. See [Bou89, VII, §1.10, Proposition 18]. For completeness, we give a proof
of the isomorphism Pic(S) ' Pic(S×A1).

Let S×A1 pr1→ S be the projection onto the first coordinate. Since pr1 admits a
section, pr∗1 is injective. We will show surjectivity when S is normal.

By considering connected components, we may assume that S is integral. Let
K denote the field of fractions of S. Then S×A1 is integral with field of fractions
K(X) for an indeterminate X. Therefore ClC ' Pic for both S and S×A1, so by
considering the sheaves DivC , we reduce to the case where S = Spec(A) is affine
and A is an integrally closed domain. We identify S×A1 with Spec(A[X]).

Take a line bundle I ∈ Pic(A[X]). Since K[X] is a UFD, we have Pic(K[X])
is trivial by Proposition 3.3.4. Therefore I ⊗A[X]K[X] ' K[X], so we can assume
that I is an ideal in A[X]. Divide by X until I ∩ A 6= 0. We want to show that
I = (I ∩A)[X]. Proposition 2.1.6 implies that

I =
⋂

ht(P)=1

IP ⊂ K(X).

Let P be a height 1 prime in A[X] and set p = P ∩ A, which is a prime in A of
height ≤ 1. Then Ap[X] ⊂ A[X]P and Ip = IAp[X] = IP∩Ap[X]. Since A satisfies
(R1), we know that Ap is a DVR and hence a UFD. Therefore Ip ∈ Pic(Ap[X]) = 0
is a principal ideal. Its generator must lie in Ap since I ∩ A 6= 0. It follows that
Ip = (IP ∩Ap)[X]. Therefore

I =
⋂

ht(P)=1

(IP ∩Ap)[X] = (I ∩A)[X]. �

Theorem 3.3.9 (Auslander-Buchsbaum). A regular local ring is a UFD.

Proof. We suggest reading the proof in [GD67, Théorème 21.11.1] due to Kaplansky.
Alternatively, see [Mat80, (19.B) Theorem 48] or [Mat89, Theorem 20.3] for a
slightly different argument. �

4. Conclusion

4.1. Further reading. These notes are by no means a comprehensive review of
local algebra – they only skim the surface of what is there. To name a few topics
omitted: complete intersection rings, Gorenstein rings, and how flatness relates to
local properties. See [Mat80] or [Mat89] for results in these areas. There are then
of course even deeper topics that I know nothing about, which can be found in
loc. cit. and EGA.
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