
INVARIANT DIFFERENTIAL OPERATORS

JONATHAN WANG

The goal of this talk is to go over Knop’s paper [5] in the context of a spherical variety1 X
with a right action by a connective reductive group G over an algebraically closed field k of
characteristic 0. We fix a maximal split torus A ⊂ G.

Recall that Harish-Chandra showed that the center Z(g) of the universal enveloping algebra
U(g) is isomorphic to the polynomial algebra k[a∗]W , and this algebra controls the spectral
decomposition of L2(G). To study the spectral decomposition of L2(X), the role of Z(g) is
replaced by the algebra D(X)G of invariant differential operators on X. One of the main
results of [5] is the following:

Theorem 0.1 ([5, Corollary 6.3, Theorem 6.5]). The algebra D(X)G is commutative and there
is a canonical isomorphism

D(X)G ∼= k[ρ+ a∗X ]WX .

The outline is as follows: Knop first defines the algebra U(X) ⊂ D(X) of completely regular
differential operators and defines Z(X) := U(X)G. It turns out that Z(X) is exactly the center
of U(X), and for X spherical, Z(X) = D(X)G. These algebras of differential operators are
all related to the non-abelian analog of the moment map, and the idea is to reduce to known
properties of the moment map by applying a vanishing theorem of Kollár [2].

Historically, Knop proved properties about the moment map first in [3] and then considered
the quantized version in [5]. But in this talk I will discuss the properties of the quantized and
graded versions simultaneously.

1. Moment map and the sheaf UX

We do not need X to be spherical in this section.

1.1. Localized moment map. Assume for now that X is smooth.
I will use subscripts to denote sheaves and parentheses to denote global sections, e.g., DX is

the sheaf of differential operators and D(X) = Γ(X,DX) is the algebra of global sections.
The G-action on X extends to a map of algebras

(1.1) U(g)→ D(X).

This extends to a map of sheaves of algebras

(1.2) OX ⊗
k
U(g)→ DX .

Define the sheaf of algebras UX to be the image of this map.
If we take associated graded of (1.2), we get the map of commutative algebras

OX ⊗ k[g∗]→ Sym•OX
(Ω∨X),
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1We will assume X is quasi-affine whenever convenient. Knop in fact works in a much more general setting

of not necessarily spherical G-varieties!
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with Ω∨X the tangent sheaf. Applying relative Spec gives the map of varieties

π×Φ : T ∗X → X × g∗

where T ∗X is the cotangent bundle, π : T ∗X → X is the projection, and Φ : T ∗X → g∗ is the

moment map. Define T g
X to be the closure of the image of π×Φ (Knop denotes T g

X by T̃X , but
to avoid confusion with previous notation we use the notation of [9, 8.3]). The moment map
factors as

Φ : T ∗X
κ→ T g

X
Φ→ g∗.

(Recall that if we took associated graded of (1.1), we get k[g∗] = grU(g)→ grD(X) ↪→ k[T ∗X ],
where the last inclusion is the symbol map.) The morphism Φ : T g

X → g∗ is called the localized
moment map.

If we also use π : T g
X → X to denote the projection, then π∗(OTg

X
) ⊂ Sym•(Ω∨X) is the image

of OX ⊗ k[g∗]→ Sym•(Ω∨X). So T g
X is the abelian analog of the sheaf of algebras UX . Observe

that

(1) The projection π : T g
X → X is affine.

(2) The map Φ : T g
X → g∗ is proper if X is complete.

Example 1.2. Let X• = H\G denote the open G-orbit in X. Then T ∗H\G = h⊥×H G embeds

into H\G× g∗ and T ∗H\G = T g
H\G. Since DH\G is generated by elements in degrees ≤ 1, we

deduce that UH\G = DH\G.

We have shown that T ∗X• = T g
X• ⊂ T

g
X . If X is complete, then Φ : T g

X → g∗ is a proper map
extending the moment map T ∗H\G → g∗. This properness is the primary reason we constructed

the localized moment map.

Example 1.3. Let X = A1 and G = Gm. Then D(X) has a basis formed by xa( d
dx )b for a, b ≥ 0.

On the other hand, U(g) ⊂ D(X) has a basis formed by (x d
dx )b for b ≥ 0. So Γ(X,UX) ( D(X)

has a basis formed by xa(x d
dx )b for a, b ≥ 0.

The moment map Φ : T ∗X = A2 → g∗ = A1 sends (y, x) 7→ xy. So we have T g
X = g∗×X = A2

but the map κ : T ∗X → T g
X corresponds to the map A2 → A2 : (y, x) 7→ (xy, x). In particular,

the fiber over (0, 0) is A1.

Below we study various properties of T g
X .

Lemma 1.4 ([5, Lemma 2.1]). The fiber κ−1(y) of y ∈ T g
X under T ∗X

κ→ T g
X is either empty or

isomorphic to (Tx(Gx))⊥ ⊂ T ∗xX for x = π(y). In particular, every fiber is irreducible.

Corollary 1.5. The map κ : T ∗X → T g
X is an isomorphism iff G acts transitively on X.

We say that X is pseudo-free if T g
X → X is a vector bundle (this is true for example when

X = H\G is smooth homogeneous). If we let n = dimX then from Example 1.2 we have
T ∗X• ⊂ T

g
X is a vector bundle of rank n over X•, and we have a map

σ : X• → Grn(g∗) : x 7→ g⊥x ,

where Grn(g∗) denotes the usual Grassmannian of n-dimensional subspaces of g∗, and gx denotes
the stabilizer of x in g.

Lemma 1.6 ([5, Lemma 2.4]). X is pseudo-free iff σ extends to a morphism σ : X → Grn(g∗)
on all of X.

In other words, pseudo-freeness means that the general subspaces g⊥x degenerate at the
boundary to specific limits.
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Corollary 1.7. For arbitrary X, there exists a smooth pseudo-free G-variety X̃ together with

a projective, birational, equivariant map X̃ → X.

Proof. Take the closure of X• in X ×Grn(g∗) and choose an equivariant resolution of singu-

larities X̃. Then the map X̃ → X will be projective because Grn(g∗) is, and it has the stated
properties. �

Example 1.8. Let X = A2 with the standard action by G = SL2. Then X• = A2 \{0} = N−\G
and X is horospherical. The moment map Φ : T ∗X = A2×A2 → g∗ sends (v, ξ) to the functional
(A ∈ g 7→ 〈ξ, Av〉) ∈ g∗. We see that while T ∗0X = A2, we have T g

0X = {0}× g∗ has dimension
3. In particular T ∗X → T g

X is not surjective, and X is not pseudo-free.

If we consider the blowup X̃ of A2 at 0, then X̃ will be a smooth pseudo-free resolution of
X.

1.9. Filtrations. The sheaf UX carries two filtrations: one induced by U(g)(n) and the other

induced by D
(n)
X . Let FX := π∗(OTg

X
). We have the following commutative diagram of sheaves

of graded algebras:

(1.3) grU UX //

��

FX� _

��

grD UX
� � // grDX = Sym•(Ω∨X)

Theorem 1.10. Let X be smooth and pseudo-free. Then the U-filtration and the D-filtration
of UX coincide and the canonical map

grUX → π∗(OTg
X

)

is an isomorphism.

Proof. Denote the nth graded component of FX by FnX . Since T g
X is a vector bundle, F1

X is lo-
cally free and FnX = Symn

OX
(F1
X). The map ϕ̄ : grU UX → FX is by construction an isomorphism

in degrees 0 and 1. Thus there is a unique homogeneous map ψ : FX = Sym•OX
(F1
X)→ grU UX

such that ϕ̄ ◦ ψ = id. By construction, grU UX is generated by elements of degree ≤ 1, so ψ ◦ ϕ̄
is surjective. Since ψ ◦ ϕ̄ is an endomorphism, it is an isomorphism.

To see that the filtrations F •U and F •D coincide, observe from diagram (1.3) that grU UX →
grD UX is injective. Therefore

FnUUX = Fn+1
U UX ∩ FnDUX = Fn+2

U UX ∩ FnDUX = · · · = FnDUX . �

Corollary 1.11. Let X be smooth and pseudo-free. Then for any n ≥ 0 there is a short exact
sequence

0→ U
(n−1)
X → U

(n)
X → Symn F1

X = (π∗OTg
X

)n → 0.

In particular, the sheaves U
(n)
X are locally free as left or right OX-modules.

1.12. Functoriality. We will later define the algebra U(X) from the sheaf UX , but we want
U(X) to be an equivariant birational invariant of X. For this we will need some functoriality
properties of the sheaves UX .

Lemma 1.13 ([5, Corollary 3.2]). Let ϕ : X̃ → X be an equivariant proper birational morphism
between smooth pseudo-free G-varieties. Then there is a canonical algebra isomorphism

UX
∼→ ϕ∗UX̃ .
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2. The algebra U(X)

Let X be an arbitrary spherical G-variety (dropping the smoothness assumption).

2.1. Definition of U(X). Let ϕ : X̃ → X be equivariant, birational, and proper, with X̃
smooth and pseudo-free, which exists by Corollary 1.7. Let

UX := ϕ∗UX̃ ⊂ DX .

By Lemma 1.13, the sheaf UX does not depend on the choice of resolution X̃.
We define2 the algebra of completely regular differential operators U(X) as follows: take any

equivariant completion X ↪→ X and let

U(X) := Γ(X,UX).

Since for any two completions X ↪→ X1, X ↪→ X2 the closure of the diagonal X ↪→ X1×X2

dominates Xi, Lemma 1.13 again implies that the definition is independent of the choice of
compactification.

It is evident from the construction that U(X) is an equivariant birational invariant of X.

2.2. Normalized moment map. Before proceeding further, let us discuss the abelian analog
of U(X). Assume first that X is smooth. We can factor the localized moment map Φ : T g

X → g∗

into

T g
X

Φ̃→ g∗X → g∗

where g∗X is the normalization (i.e., integral closure) of Φ(T g
X) in T g

X . Since the fibers of
T ∗X → T g

X are irreducible by Lemma 1.4 and T ∗X is smooth hence normal, we can equivalently
define g∗X as the normalization of the closure of the image of the moment map T ∗X → g∗ in
k(T ∗X).

This factorization has the defining properties that g∗X → g∗ is finite and the normalized

moment map Φ̃ : T g
X → g∗X has irreducible general fibers. When X is complete, this coincides

with the Stein factorization of Φ.
Example 1.2 shows that Φ(T g

X) = Φ(T ∗X•) and hence g∗X is an equivariant birational invariant
of X. This allows us to define g∗X also for non-smooth X.

We will use a vanishing theorem to show that g∗X is the commutative version of U(X). Let
X once again be arbitrary spherical.

Theorem 2.3 ([5, Theorem 6.1]). There are canonical isomorphisms

grU(X)
∼→ k[g∗X ], grU(X)G

∼→ k[g∗X ]G.

Example 2.4. Take X = G with G acting on X by left translations (this is not a spherical
variety, but the above definitions still make sense). Then T ∗X = T g

X = G× g∗ is the trivial

bundle and g∗X = g∗. In this case UX = OX ⊗U(g) for any completion X of X. Therefore
U(X) = U(g).

Example 2.5. LetX = H andG = H ×H, soX isG-spherical. Then T ∗X = T g
X = h∗×H, where

one copy of H acts by left translation on H and coadjoint action on h∗ while the other copy of H
acts by right translation on H and trivial action. The moment map Φ : h∗×H → g∗ = h∗× h∗

sends (ξ, h) 7→ (ξ,−Ad(h)ξ). Then Φ(T ∗X) = h∗×h∗//H h∗ because it is true on the regular
semisimple locus. So g∗X is the normalization of h∗×h∗//H h∗ in h∗×H.

2The definition of U(X) does not require X to be spherical.
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Example 2.6. Consider X = H\G horospherical. Let P− = NG(H) and AX = P−/H. The
moment map factors as

Φ : h⊥
H
×G� h⊥

P−

× G
ϕ→ g∗.

Since P−\G is complete, ϕ is proper and Φ(T ∗X) = Gh⊥. We identify g ∼= g∗ via the Killing
form. Then h⊥ identifies with aX

⊕
u(p−). By [6, Theorem 5.1] of Richardson, the adjoint

action map u(p−)×P− G→ Gu(p−) has finite general fibers. It follows that ϕ has finite general
fibers. Therefore there is a proper birational map

h⊥
P−

× G→ g∗X .

We have checked all but the last sentence of the following:

Lemma 2.7 ([3, Lemma 4.1]). There exists a proper, birational map Z = h⊥×P− G → g∗X
with finite general fibers. We have Hi(Z,OZ) = 0 for i > 0.

The last statement is deduced from the Grauert–Riemenschneider vanishing theorem.

Example 2.8. Let X = A\SL2 with G = SL2. Here T ∗X = (n + n−)×AG where we identify
g ∼= g∗ via Killing form. The moment map is surjective. Let e ∈ n, f ∈ n−, h ∈ a be a standard
sl2-triple. Then k → g//G : c 7→ e+ cf is an isomorphism. This gives a section of the finite map
k → g∗X//G→ g∗//G. Thus g∗X//G = g∗//G and hence g∗X = g∗. From this and Theorem 2.3 we
can deduce that U(X) = U(g).

2.9. Functoriality. We mention some functoriality properties of U(X).

Lemma 2.10 ([5, Corollary 3.4]). Let ϕ : X → Y be an equivariant map.

(1) If ϕ is dominant with irreducible general fibers, then it induces a map of algebras
U(X)→ U(Y ).

(2) If ϕ is generically injective, then it induces an algebra homomorphism U(Y )→ U(X).

2.11. The vanishing theorem. We now present the vanishing theorem [5, Theorem 4.1],
which is the heart of the paper [5].

Theorem 2.12. Let X be a smooth, complete, pseudo-free spherical variety. Then the following
hold for all i > 0:

(1) Hi(X,U
(n)
X ) = 0 for all n ≥ 0,

(2) Hi(X, (π∗OTg
X

)n) = 0 for all n ≥ 0,

(3) Hi(T g
X ,OTg

X
) = 0,

(4) RiΦ̃∗OTg
X

= 0.

The proof will use the following theorem of Kollár:

Theorem 2.13 ([2, Theorem 7.1], [5, Theorem 4.2]). Let ϕ : Y → Z be a proper morphism
where Y is smooth and Z has rational singularities. Assume that the general fiber F of ϕ is
connected with Hi(F,OF ) = 0 for i > 0. Then Riϕ∗OY = 0 for all i > 0.

By definition, Z has rational singularities if it is normal, of finite type, and there exists a

proper birational map f : Z̃ → Z from a regular scheme Z̃ such that Rif∗OZ̃ = 0 for i > 0.

Proof of Theorem 2.12. First we reduce all assertions to (4). (2) implies (1) by the long exact
sequence in cohomology associated to the short exact sequence in Corollary 1.11. (3) implies
(2) by the Leray spectral sequence for the affine morphism π : T g

X → X, which gives
∞⊕
n=0

Hi(X, (π∗OTg
X

)n) = Hi(X,π∗OTg
X

) = Hi(T g
X ,OTg

X
) = 0.
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Finally (4) implies (3) since g∗X is affine.

To prove (4), we want to apply Theorem 2.13 to the map Φ̃ : T g
X → g∗X . So the remainder

of the proof is to check that Φ̃ satisfies the conditions of Theorem 2.13.

Lemma 2.14 ([5, Lemma 4.3]). Let X be smooth. Then g∗X has rational singularities. In
particular, it is Cohen–Macaulay.

Proof. Let X0 be the horospherical degeneration of X. Then there is an action of WX on g∗X0

with g∗X = g∗X0
//WX by [3, 6.4]. Using this, one can reduce (cf. [1]) to checking that g∗X0

has
rational singularities, which is Lemma 2.7. �

Lastly, it remains to check that the general fiber of Φ̃ : T g
X → g∗X has vanishing higher

cohomologies. Now we use the fact [8, Lemma 1] that the higher cohomology of the structure

sheaf of a smooth unirational3 variety vanishes. We will show that the general fiber of Φ̃ is
unirational. Since this is a generic property, we may assume X = H\G. Then T g

X = T ∗X
(Example 1.2).

Theorem 2.15 ([5, Theorem 5.1]). Let X = H\G be homogeneous. Then the general fiber of

Φ̃ : T ∗X → g∗X is unirational.

The proof of this theorem is much harder for X not spherical, and that proof is the crux of
Knop’s paper [5]. For spherical varieties, the theorem follows from the next lemma.

Lemma 2.16 ([3, 7.1, 8.1]). Suppose X is smooth and let Ψ : T ∗X → g∗X//G denote the composi-

tion of Φ̃ with the projection g∗X → g∗X//G. Let α ∈ T ∗X be a general point. Then Gα is dense in

Ψ−1Ψ(α) with codimension dimAX in T ∗X . Moreover, Φ̃−1Φ̃(α) contains GΦ̃(α)α
∼= GΦ̃(α)/Gα

as a dense open, and this orbit is non-canonically isomorphic to AX .

Proof. The assertions can all be deduced from the local structure theorem (cf. [4, §4]) for
quasi-affine (hence non-degenerate) X. �

Proof of Theorem 2.15. Lemma 2.15 implies that the general fiber of Φ̃ contains a torus as a
dense open and is hence unirational. �

We have shown that Φ̃ : T g
X → g∗X satisfies the conditions of Theorem 2.13, which proves (4)

and hence Theorem 2.12. �

3. The algebra Z(X)

Recall that by construction U(X) has a canonical filtration (induced by the filtration on U(g)
or D(X)). We apply Theorem 2.12 to prove the previously stated Theorem 2.3, which says
that U(X),U(X)G are the non-commutative versions of g∗X and g∗X//G, respectively.

Proof of Theorem 2.3. The second isomorphism

grU(X)G = gr k[g∗X ]G

follows from the first isomorphism grU(X) = gr k[g∗X ] by linear reductivity of G (i.e., taking
G-invariance is exact).

We prove the first isomorphism. Since both sides are G-birational invariants, we may assume

X is smooth, complete, and pseudo-free. Then U(X) = H0(X,UX). Since Φ̃ : T g
X → g∗X is

proper with irreducible general fibers, Φ̃∗(OTg
X

) = Og∗X
and k[g∗X ] = H0(X,π∗OTg

X
). Hence the

3A variety is unirational if it is dominated by a rational variety (i.e., a variety birationally equivalent to Pn

for some n).
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first isomorphism follows from the long exact sequence associated to the short exact sequence
in Corollary 1.11 and the Vanishing Theorem 2.12. �

Define Z(X) := U(X)G, which is a filtered algebra.

3.1. Chevalley isomorphism. Theorem 2.3 implies that grZ(X) = k[g∗X ]G = k[g∗X//G]. In
this graded (commutative) case, we have a “Chevalley isomorphism” g∗X//G

∼= a∗X//WX .
For any subset s of a∗ let NW (s) := {w ∈W | ws = s}, CW (s) := {w ∈W | w|s = ids}, and

W (s) := NW (s)/CW (s).

Lemma 3.2 (Definition of WX in [3]). There is a canonical isomorphism

g∗X//G
∼= a∗X//WX .

Proof. In [3], the little Weyl group WX is essentially defined by Galois theory so that the above
isomorphism holds. Let us briefly explain, and also explain why this agrees with the definition
of WX given in the previous talk. Assume that X is smooth and non-degenerate.

Consider the composition T ∗X → g∗ → g∗//G ∼= a∗//W . Recall from the previous talk [4, §3]
that Z := T ∗X ×a∗//W a∗X can have several irreducible components, and we singled out one of

them, denoted T̂ ∗X . By considering the regular locus, we see that the normalization of the image
of a∗X → a∗//W equals a∗X//W (a∗X). The group W (a∗X) acts on Z and permutes the irreducible
components transitively. We defined WX ⊂W (a∗X) to be the subgroup of elements which map

T̂ ∗X to itself. It acts freely on T̂ ∗X ×a∗X
(a∗X)reg and the map T̂ ∗X//WX → T ∗X is birational.

By choosing a point in the open B-locus of X (cf. [4, Lemma 3.4]), we get a section σ̂ :

a∗X → T̂ ∗X of Ψ̂ : T̂ ∗X → a∗X . The proof of the local structure theorem (cf. loc cit.) shows that

the generic fibers of Ψ̂ are irreducible (contains a dense G-orbit). Hence the generic fibers of

T̂ ∗X//WX → a∗X//WX are also irreducible. This implies that k[a∗X ]WX is integrally closed in
k[T ∗X ]. We have the following diagram:

a∗X
σ̂ //

''

T̂ ∗X
� � // Z //

��

a∗X

��

T ∗X
// g∗X//G

// a∗X//W (a∗X) // a∗//W

where the map a∗X → g∗X//G is surjective. We have finite surjective maps a∗X → g∗X//G →
a∗X//W (a∗X), so by Galois theory, g∗X//G

∼= a∗X//W
′
X for some W ′X ⊂ W (a∗X). This W ′X is the

little Weyl group defined in [3]. By construction, k[g∗X ]G = k[a∗X ]W
′
X is integrally closed in

k[T ∗X ]. Therefore k[a∗X ]W
′
X = k[a∗X ]WX and consequently W ′X = WX . In the process, we have

also shown the Chevalley isomorphism. �

Remark 3.3. Since we have seen that T ∗X → a∗X//WX has irreducible general fibers, it follows
that T ∗X ×a∗X//WX

a∗X is irreducible. Thus we get that

T̂ ∗X = T ∗X ×
a∗X//WX

a∗X .

Lemma 3.4 ([5, Corollary 6.3]). We have an equality Z(X) = D(X)G.
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Proof. Since Z(X) = Z(X•) and D(X) ⊂ D(X•), we may assume X = X• is homogeneous
(hence smooth). By Theorem 2.3, we have the diagram of associated graded algebras

grZ(X) �
�

//

∼
��

grD(X)G� _

��

k[g∗X ]G // k[T ∗X ]G

The bottom arrow is an isomorphism by the following lemma, so we deduce that grZ(X) =
grD(X)G, which proves the claim. �

Lemma 3.5. For X smooth, the canonical map k[g∗X ]G → k[T ∗X ]G is an isomorphism.

Proof. Lemma 2.16 says that the codimension of a general G-orbit in T ∗X equals r := dimAX .
This implies that tr.degk k(T ∗X)G = r = dim g∗X//G. Hence k(T ∗X)G is an algebraic extension
over the field of rational functions on g∗X//G. By definition, k[g∗X ] is integrally closed in k[T ∗X ].
Therefore k[g∗X ]G is also integrally closed in k[T ∗X ]G, which implies that k[g∗X ]G = k[T ∗X ]G. �

3.6. Harish-Chandra isomorphism. First we recall the classical Harish-Chandra isomor-
phism for Z(g). By PBW, we have U(g) = U(a) ⊕ (nU(g) + U(g)n−). We identify U(a) with
k[a∗]. Then Harish-Chandra’s Theorem says that

Z(g) ↪→ U(g) � U(a) = k[a∗]

induces an isomorphism of Z(g) with k[a∗]W ·, where W · is the shifted dot action w · λ =
w(λ + ρ) − ρ. We have an isomorphism k[a∗]W · ∼= k[ρ + a∗]W by ρ-shift. We now want to
generalize this to the setting of spherical varieties, i.e., prove Theorem 0.1.

3.6.1. Horospherical case. Now consider X0 = H\G horospherical. Then we have a left action
of AX on X0 commuting with the right G-action. Therefore we get a map

k[a∗X ] = U(aX)→ D(X0)G = Z(X0).

By taking associated graded and using Theorem 2.3, we see that this map is an isomorphism.
Let us identify Z(X0) with k[ρ+ a∗X ] by ρ-shift.

This gives us another description of the Harish-Chandra isomorphism for Z(g): let X0 =
N−\G. The G-action on X0 gives a map Z(g)→ Z(N−\G), and we just saw that Z(N−\G) =
k[ρ+a∗]. One can check ([5, Lemma 6.4]) that this map is compatible with the Harish-Chandra
isomorphism, i.e., the following diagram commutes:

(3.1) Z(g) //

∼HC

��

Z(N−\G)

∼
��

k[ρ+ a∗]W �
�

/ k[ρ+ a∗]

3.6.2. Affine degenerations. For a quasi-affine spherical variety X, it is possible to construct a
flat family ∆ : X → A1 where X is a G×Gm-variety such that Xt := ∆−1(t) is G-isomorphic
to X for t 6= 0 and X0 is horospherical (cf. [7, §2.5], [3, 2.7]). The construction is an easy Rees
algebra construction, but we will skip it and just give an example:

Example 3.7. Let X = H = SL2 and G = H ×H. Then X = Mat2 and ∆ : X → A1 is
the determinant map. The horospherical variety X0 is the affine variety of matrices with rank
≤ 1. Observe that X0 is the canonical affine closure of the space of rank 1 matrices, which is

isomorphic to H ×H/Adiag
H (NH ×N−H ).
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3.7.1. General case. For any subset s of a∗ let NW (s) := {w ∈ W | ws = s}, CW (s) := {w ∈
W | w|s = ids}, and W (s) := NW (s)/CW (s). We have NW (ρ+ a∗X) ∩ CW (a∗X) = CW (ρ+ a∗X).
The RHS is trivial since the isotropy group of ρ is trivial. Therefore we have inclusions

NW (ρ+ a∗X) ⊂W (a∗X) ⊃WX .

Theorem 3.8 ([5, Theorem 6.5]). We have WX ⊂ NW (ρ + a∗X) and there is a canonical
isomorphism iG0 such that the following diagram commutes:

Z(g)
∼ //

��

k[ρ+ a∗]W

res

��

Z(X)
iG0 // k[ρ+ a∗X ]WX

Proof. Let X → A1 be the affine degeneration of X. We consider X as a G-variety. While X

is not G-spherical, the definition of U(X) still makes sense. It is straightforward to check that
U(X) = U(X ×A1), where G acts trivially on A1 (cf. [5, Lemma 3.5]). Since X ×A1 and X are
birationally G-equivalent, we have U(X) = U(X ×A1) = U(X). By functoriality (Lemma 2.10),
we get a map

i0 : U(X) = U(X)→ U(X0),

which induces a map

iG0 : Z(X)→ Z(X0) ∼= k[ρ+ a∗X ].

The associated graded of iG0 corresponds (by Theorem 2.3) to the surjective finite projection
a∗X → a∗X//WX . This implies that iG0 is injective. In particular, Z(X) is commutative and iG0 is
an integral extension. From (3.1), we deduce that the diagram

Z(g) ∼= k[ρ+ a∗]W �
�

//

��

k[a∗]

��

Z(X)
iG0 // k[ρ+ a∗X ]

commutes, where Z(g) → Z(X) is induced by the G-action on X. Since Z(X) is contained in
a polynomial ring and its associated graded is integrally closed, it is itself integrally closed.
Therefore by Galois theory, there is a subgroup W0 ⊂ NW (ρ+ a∗X) such that

Z(X) = k[ρ+ a∗X ]W0 .

On the other hand, grZ(X) = k[a∗X ]WX , and it follows that W0 = WX .
Finally, the map iG0 is independent of the degeneration X because it factorizes k[ρ+ a∗]W →

k[ρ + a∗X ] and gr iG0 : k[a∗X ]WX ↪→ k[a∗X ] is canonically defined: hence iG0 : Z(X) → k[ρ + a∗X ]
is a filtered map of finite k[ρ+ a∗]W -modules whose associated graded is uniquely determined.
By picking finitely many generators, we can deduce that iG0 is canonical. �

Remark 3.9. A priori, the little Weyl group WX ⊂ W (a∗X) is defined as a subquotient of W .
The theorem shows that WX ⊂ NW (ρ+ a∗X), so it is in fact canonically a subgroup of W .

Lastly, we remark that as the notation suggests, Z(X) is indeed the center of U(X). Fur-
thermore, U(X) is a free Z(X)-module. See [5, Corollary 7.5] for the (short) proof.
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