
FLAG VARIETY

JONATHAN WANG

In this note, we explore some properties concerning the flag variety G/B where G
is a reductive algebraic group and B a Borel subgroup over an algebraically closed
field. We start with some very general facts, and make more assumptions to prove
more interesting results later on.

1. G-equivariant sheaves and stacks

1.1. QCoh on a stack. We know that QCoh forms a stack, i.e., sheaf of groupoids,
over Schfpqc(S) for any scheme S. Thus if we have an fpqc sheaf of groupoids X
over S, we can define QCoh(X ) as maps of sheaves

X → QCoh

on Schfpqc(S). By 2-Yoneda, this definition agrees with the usual notion of quasi-
coherent sheaves if X is a scheme.

For various other (usually equivalent) definitions in the case X is a DM/Artin
stack, see [LMB00, Ch. 12-13].

1.2. A different perspective on G-equivariant sheaves. Let X be a k-scheme
with [left] G-action, where G is affine algebraic group over algebraically closed field
k. Let QCoh(X)G denote G-equivariant sheaves on X.

Lemma 1. There is an equivalence QCoh(X)G ' QCoh([G\X]) where [G\X] is
the quotient stack.

Proof. Start with F ∈ QCoh(X)G. For S → [G\X] corresponding to G-bundle P,
we have Cartesian square

P
f
//

��

X

��

S
P // [G\X]

Then f∗F ∈ QCoh(P)G. We know that P ×S P ' G×P, so G-equivariant struc-
ture on f∗F is the same as descent datum for P → S. This gives us a sheaf on S
that pulls back to f∗F . Next suppose we have P,P ′ ∈ [G\X](S) with isomorphism
σ : P ′ ' P. Then there exists covering S′ → S that trivializes both P,P ′. So let
us just consider

G×S′
rg
// G×S′

��

f
// X

��

S′ // [G\X]

where g ∈ G(S′) and rg denotes the corresponding G-equivariant map via right
multiplication by g. Since G×S′ is trivial, we have a section i : S′ → G×S′
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corresponding to 1. The two sheaves on S′ are then just i∗f∗F , i∗r∗gf∗F . Notice
now that g · (f ◦ i) = (f ◦ rg ◦ i) ∈ X(S′). Therefore G-equivariance of F gives an
isomorphism

i∗f∗F ' (f ◦ i)∗F ' (g · (f ◦ i))∗F ' i∗r∗gf∗F .
By some kind of descent argument, this will give an isomorphism in the general
case P ' P ′ as well. This defines our map [G\X]→ QCoh.

For the other direction, just take F the image of the atlas X → [G\X]→ QCoh.
We get an isomorphism act∗F ' p∗2F from the 2-Cartesian square

G×X act //

p2

��

X

��

X // [G\X]

The corresponding isomorphism G×G×X ' G×G×X is given by (g1, g2, x) 7→
(g1g2, g2, x) (I worked it out – I promise).

First, we show that if we start with F ∈ QCoh(X)G, and we apply the above two
functors, we essentially get back F . First, p∗2F ' act∗F tells us the quasi-coherent
sheaf is F . Next we check G-equivariant structure. Take the map G×X → [G\X]
corresponding to

G×G×X
g1·x //

p23

��

X

G×X
Precompose with the G×G×X ' G×G×X of the previous paragraph. Then
precomposing with the identity section G×X → G×G×X ⇒ X gives p2, act.
The isomorphism p∗2F ' act∗F thus gotten is exactly the original.

To check starting with a map [G\X]→ QCoh should follow entirely from formal
compatibility properties of stacks. �

Lemma 1 is true for left or right G-actions on X.

1.3. QCoh(BG). We have the algebraic stack BG = [G\·]. We characterize quasi-
coherent sheaves on it.

Lemma 2. There is an equivalence between QCoh(BG) and G-modules.

Here by a G-module we mean what [MFK94, Ch. 1, §1] refers to as dual action of
G on k-vector space V , or equivalently what [Jan03, I.2.7-8] calls an OG-comodule.
This is the same as a rational representation when V is finite dimensional.

Proof. Start with a map F : BG→ QCoh. We have an atlas · → BG corresponding
to G→ k. Let V be F(· → BG). Now the isomorphism σ : G×G ' G×G defined
by m, p2 must give an isomorphism OG⊗V ' OG⊗V . This gives a G-action on
V .

We now show how F is determined by V . Take S
P→ BG. Then we have some

covering S′ → S trivializing P, i.e.,

S′×
S
S′ ⇒ S′ → S → BG



FLAG VARIETY 3

such that S′ → BG factors through · → BG. Let S′′ = S′×S S′; the transition
G×S′′ → G×S′′ corresponds to some g ∈ G(S′′). This isomorphism corresponds
to the pullback of σ along

S′′
g(s),s→ G×S′′ p1→ G.

We therefore have that F(S
P→ BG) corresponds to the descent datum of V ⊗OS′

on S′ with transitions the pullback of F(σ).
Now if we start with a representation V ; that is, a map V → OG⊗V satisfying

certain conditions, we get a map OG⊗V → OG⊗V , which is an isomorphism
using the conditions. The previous paragraph in reverse tells us how to get a map
BG→ QCoh. �

Better proof. By Lemma 1, we have QCoh([G\·]) ' QCoh(·)G, where the latter is
equivalent to OG-comodules (see 233A.9.1(a)). �

Lemma 2 is true for left or right G-bundles.

Corollary 3. Let H ⊂ G be a closed embedding of affine algebraic groups. There
is an equivalence between QCoh(G/H)G and H-modules.

Proof. From Toly’s talk, we have [G\(G/H)] ' [H\·] = BH (see Stacks.BG). Now
Lemmas 1, 2 give the result.

As an exercise, let us explicitly describe the correspondences in both directions.
Start with F ∈ QCoh(G/H)G. If we take (H → k) ∈ BH(k), then the corre-

sponding element of [G\(G/H)](k) is (G → k,G → G/H). We have 2-Cartesian
square

G //

��

G/H

��

· // [G\(G/H)]

Then V = F ⊗ k(1H) where 1H ∈ G/H(k). To find the action of H on V ,

take H ×H m,p2→ H ×H in BH(H). This corresponds to G×H m,p2→ G×H in
[G\(G/H)](H). TheH-representation on V is gotten from pullback of act∗F ' p∗2F
via

H → G×G/H ⇒ G/H

where H → G×G/H is inclusion H ↪→ G and H → · → G/H corresponding to
1H ∈ G/H(k).

Now start with H-representation V . To get our G-equivariant sheaf on G/H,
we need to find out what

G/H → [G\(G/H)] ' BH → QCoh

corresponds to. The atlas (G×G/H act→ G/H) ∈ [G\(G/H)](G/H) corresponds to
left H-bundle G→ G/H. Thus our F ∈ QCoh(G/H)G is given locally by OS′ ⊗V
for S′ → G/H a cover trivializing G; the transition maps correspond to action
of H(S′×G/H S′) on V as an H-representation. Even though V may be infinite
dimensional, we can suggestively write this as

F = G
H
×V.
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The isomorphism act∗F ' p∗2F should intuitively be given by G×G×H V →
G×G×H V : (g1, g2, v) 7→ (g1, g1g2, v); this can be made formal using descent and
unwinding all the previous constructions (omitted). �

Corollary 4. Any G-equivariant quasi-coherent sheaf on G/H is flat.

Proof. From the proof of Corollary 3, we see that on a faithfully flat covering
S′ → G/H, the pullback of F is free, hence flat. By faithful flatness we deduce F
is flat. �

2. G-equivariant vector bundles and representations

Let X be a k-scheme with G-action, and suppose E is a vector bundle with G-
equivariant structure on X. The following constructions are taken from [MFK94,
Ch. 1, §3].

2.1. G-action on total space Tot(E). The the isomorphism φ : p∗2E ' act∗E gives
an isomorphism

φ : (G×X) ×
X,p2

Tot(E) ' (G×X) ×
X,act

Tot(E)

over G×X. The latter is equivalent to the Cartesian square

G×Tot(E)

id×π
��

p2◦φ // Tot(E)

π

��

G×X act // X

One can check that the above G×Tot(E)→ Tot(E) is a G-action.

2.2. Making Γ(X, E) an OG-comodule. We have the following map

∆ : Γ(X, E)
act∗→ Γ(G×X, act∗E)

Γ(φ)→ Γ(G×X, p∗2E) ' OG⊗
k

Γ(X, E)

where the last step uses projection formula: p2∗p
∗
2E ' E ⊗OX

p2∗OG×X ' E ⊗kOG.
The co-cycle condition on φ ensures this makes Γ(X, E) into a comodule.

2.2.1. Explicit description. As described in [Jan03, I.2.8], an OG-comodule struc-
ture on V is equivalent to a group action G×V → V of schemes, from the sheaf
perspective. Let V := Γ(X, E). We describe the action G(k)×V(k)→ V(k), where
V(k) = V . Given g ∈ G(k) ' Homk(OG, k), the action of g on V is just 1

V
∆→ OG⊗

k
V

g−1⊗ id→ V.

An element of V = Γ(X, E) corresponds to a section f : X → Tot(E). Then the
image in Γ(G×X, act∗E) is the section id× f : G×X → (G×X)×X,act Tot(E),
so we have

(G×X) ×
X,act

Tot(E) // Tot(E)

G×X

id× f
OO

act // X

f

OO

1[MFK94] defines a “left”-comodule, while [Jan03] defines a “right”-comodule. Our OG-
comodule structure on Γ(X, E) follows [MFK94], so is a “left”-comodule. Thus we need to take

g−1 when looking at G×V→ V.
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Applying φ gives us a section f ′ : G×X → G×Tot(E). Then the image of f ′

under Γ(G×X, p∗2E)
g−1⊗ id→ Γ(X, E) is the section making

Tot(E)
g−1× id

// G×Tot(E)

X

g.f

OO

g−1× id
// G×X

f ′

OO

commute. We therefore have commutative diagram

Tot(E)
g
// Tot(E)

g−1

// Tot(E)

X

g.g−1.f=f

OO

g
// X

g.f

OO

g−1

// X

f

OO

Thus g.f = g ◦ f ◦ g−1, where we appeal to G-actions on Tot(E) and X.

2.3. Relating Γ(X, E) and fibers of E.

Lemma 5. Let x ∈ X(k), g ∈ G(k). We have commutative square

Γ(X, E)
(g⊗ id)∆

∼
//

��

Γ(X, E)

��

E ⊗ kg.x
(g,x)∗φ

∼
// E ⊗ kx

where g corresponds to ring map OG → k.

Proof. To start with, we have φ : act∗E ' p∗2E on G×X. This gives commutative
square

Γ(G×X, act∗E)
Γ(G×X,φ)

//

��

Γ(G×X, p∗2E)

��

E ⊗ kg.x = (g, x)∗act∗E
(g,x)∗φ

// (g, x)∗p∗2E = E ⊗ kx

The right map Γ(G×X, p∗2E) ' OG⊗Γ(X, E)→ E ⊗ kx factors through

OG⊗Γ(X, E)
g⊗ id→ Γ(X, E).

Composing the left arrow by Γ(X, E) → Γ(G×X, act∗E) gives the claim, since
(g⊗ id)∆ is an isomorphism by properties of comodules [check]. �

3. Line bundles on G/B

For the remainder of these notes, assume k is algebraically closed, and G is a
connected reductive linear algebraic group over k. Fix a maximal torus T and Borel
subgroup T ⊂ B ⊂ G.
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3.1. Take a weight λ ∈ X∗(T ) and consider the corresponding B → Gm, which
is a 1-dimension B-representation; we denote it kλ. By Corollary 3, the associated
bundle

O(−λ) := G
B
× kλ

is a line bundle on G/B with G-equivariant structure. For open U ⊂ G/B, we
have the preimage of U under G×B kλ → G/B is π−1U ×B kλ where is projection
π : G→ G/B. Now π−1U ×B kλ ' [(π−1U × kλ)/B] as the stack quotient (B acts
on π−1U × kλ by (g, x).b = (gb, b−1x)). Thus a section U → π−1U ×B kλ is the
same as a B-bundle P on U with B-equivariant map

P //

��

π−1U × kλ

p1
zz

U

This means P→ π−1U is a B-equivariant map of B-bundles, hence an isomorphism.
Thus we can normalize to assume P = π−1U . Thus a section is the same as a map
f : π−1U → kλ where f(gb) = λ(b)−1f(g) for g ∈ (π−1U)(k), b ∈ B(k). It is enough
to specify this on k-points since everything is reduced. In general, we would use
scheme points. Note that f is just an element of Γ(π−1U,O). We have shown that

Γ(U,O(−λ)) = {f ∈ Γ(π−1U,O) | f(gb) = λ(b)−1f(g) for g ∈ (π−1U)(k), b ∈ B(k)}
See [Jan03, I.5.8] for another discussion of this.

With this explicit description of the sections of O(λ), we easily see that for
λ, µ ∈ X∗(T ), there is isomorphism

O(λ)⊗O(µ) ' O(λ+µ) : f ∈ Γ(U,O(λ)), g ∈ Γ(U,O(µ)) 7→ f ·g ∈ Γ(U,O(λ+µ)).

This is discussed in [Jan03, II.4.1].

Section 2 details how V λ := Γ(G/B,O(λ)) is given structure of aG-representation.
We have the following theorem:

Theorem 6 ([Spr09, Theorem 8.5.8], [Jan03, Proposition II.2.6]). The weight λ ∈
X∗(T ) is dominant if and only if V λ 6= 0.

The dominant weights X∗(T )+ = {λ | 〈λ, α∨〉 ≥ 0 for all α ∈ R+} with respect
to B.

Lemma 7. For λ ∈ X∗(T )+, the line bundle O(λ) is generated by global sections.

Proof. By Theorem 6, we know V λ 6= 0, so take a nonzero global section f . The

locus of isomorphy of OG/B
f→ O(λ) is open and must be nonempty since f is

nonzero. Thus there exists gB ∈ (G/B)(k) such that f |gB ∈ O(λ)⊗ kgB is nonzero.
This implies V λ → O(λ)⊗ kgB is surjective since the latter is 1-dimensional k-vector
space. As G(k) acts transitively on (G/B)(k), Lemma 5 implies V λ → O(λ)⊗ kx is
surjective for all x ∈ (G/B)(k). We have shown V λ⊗kOG/B → O(λ) is surjective
on closed points, hence surjective. �

Let λ ∈ X∗(T )+. We now know that V λ � O(λ)⊗ k1B , so taking duals, we get
`λ ⊂ (V λ)∨ where `λ := (O(λ)⊗ k1B)∨ is a B-stable one-dimensional subspace by
Lemma 5. As O(λ)⊗ k1B is isomorphic as a B-representation to k−λ (cf. proof of
Corollary 3), we have B acts on `λ via λ.

Before proceeding, we expound on a comment of [Jan03, II.1.3, pg. 176].
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Lemma 8. For any α ∈ R, there exists a homomorphism

ϕα : SL2 → G

such that for a suitable normalization of u±α:

ϕα

(
1 x
0 1

)
= uα(x), ϕα

(
1 0
x 1

)
= u−α(x), and ϕα

(
x 0
0 x−1

)
= α∨(x)

for x ∈ k.

For other properties satisfied by ϕα, see the same page of [Jan03].

Proof. Refer to the proof of [Spr09, Lemma 8.1.4]. We have Uα ⊂ (Gα, Gα), where
the latter is semi-simple of rank one. The claim then follows from the proof of
[Spr09, Theorem 7.2.4]. The last equality requires the description of α∨ given in
the proof of [Spr09, Theorem 7.3.5]; alternatively we can just use [Spr09, Lemma
8.1.4]. �

Lemma 9. Suppose we have a finite dimensional representation φ : G → GL(V ).
For v ∈ V , set P = StabG(kv). We have i : G/P ↪→ P(V ) is a locally closed
embedding. Let λ : P → Gm describe the action of P on kv. Then i∗O(1) '
OG/P (λ) as G-equivariant sheaves.

Proof. We have GL(V ) acts on P(V ). An element s ∈ P(V )(S) is L ↪→ V ⊗OS .

So for g ∈ GL(V )(S), take g.s to be L ↪→ V ⊗OS
g→ V ⊗OS . Then we have

(g.s)∗O(−1) ' L ' s∗O(−1), which provides O(−1) a GL(V )-equivariant struc-
ture. Consequently, all O(n), n ∈ Z are GL(V )-equivariant.

We check what the P -representation on the fiber of i∗O(−1) at 1P ∈ (G/P )(k)
is. Taking g ∈ P (S), we have 1P ∈ P(V )(k) is kv ↪→ V , and g.1P is

kv⊗OS ↪→ V ⊗OS
φ(g)→ V ⊗OS .

The action on kv⊗OS is λ by definition:

kv⊗OS �
�

//

λ(g)

��

V ⊗OS
φ(g)

��

kv⊗OS �
�

// V ⊗OS
Thus i∗O(−1) corresponds to λ under the equivalence of Corollary 3. Taking the
dual, we have i∗O(1) corresponds to −λ, i.e., i∗O(1) ' OG/P (λ). �

In particular, if in Lemma 9 we take the standard representation on G = GL(V ),
then G/P → P(V ) is surjective on k-points, hence an isomorphism. Letting ω be
the action of P on kv, we have O(1) ' OG/P (ω) as in [Jan03, II.4.3(1)].

Remark 10. If G is a non-reduced affine algebraic group over k, then since k is
algebraically closed, hence perfect, Gred is a reduced algebraic subgroup of G [Mil10,
Proposition I.5.11]. Now Gred is smooth over k, while G is not. By the definition of
smoothness via regularity, G is smooth iff the tangent spaces TxG all have dimension
dimG for x ∈ G(k). By homogeneity, dimTxG = dim Lie(G). We deduce that
Lie(Gred) ( Lie(G) is never an equality.

Lemma 11. Let λ ∈ X∗(T ). Then O(λ) is very ample iff 〈λ, α∨〉 > 0 for all
α ∈ R+.
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Proof. Proof taken from [Jan03, Proposition 4.4]. Suppose 〈λ, α∨〉 > 0 for all
α ∈ R+. By Chevalley’s theorem, we know there is some G-module V and v ∈ V
such that StabG(kv) = B. Let µ ∈ X∗(T ) be the character corresponding to B-
action on kv. Then there is positive integer m such that mλ − µ ∈ X∗(T )+. Let
V ′ = (V mλ−µ)∨, which is a nonzero G-module by Theorem 6. We noted earlier
that there is v′ ∈ V ′ such that B ⊂ StabG(kv′) and B acts on kv′ by mλ−µ. Now
V ⊗V ′ is a G-module and B acts on k(v⊗ v′) by mλ. By choosing a basis, one sees
that B(k) = StabG(k(v⊗ v′))(k) and Lie(B) = Lie(StabG(k(v⊗ v′))). Remark 10
implies

B = StabG(k(v⊗ v′))
Lemma 9 says the inverse image of O(1) under G/B ↪→ P(V ⊗V ′) is isomorphic
to OG/B(mλ). Hence O(mλ) ' O(λ)⊗m is very ample, so O(λ) is ample.

For the proof of very ampleness, see [Jan03, II.8.5(1)].
In the other direction, assumeO(λ) is ample. For α ∈ R+, we have ϕα : SL2 → G

by Lemma 8. Let B′ ⊂ SL2 be the Borel subgroup of upper triangular matrices.
Looking at B′(k) and Lie(B′), we deduce that B′ is the stabilizer of 1B ∈ (G/B)(k).
By [DG70, III, §3, Proposition 5.2], we have ϕ̄α : SL2/B

′ ↪→ G/B is a closed
embedding. Direct computation shows SL2/B

′ ' P1. Since ϕα on the diagonal
equals α∨, we deduce from Corollary 3 that

ϕ̄∗αOG/B(λ) ' OSL2/B′(〈λ, α
∨〉) ' OP1(〈λ, α∨〉),

where the latter isomorphism is an application of Lemma 9. Ampleness of OG/B(λ)

implies OP1(〈λ, α∨〉) is ample. Since we know what cohomology on P1 looks like,
we deduce 〈λ, α∨〉 > 0. �

Proof in characteristic zero. There is a nicer proof of the lemma if k is of charac-
teristic zero because we know stabilizer subgroups are reduced. We can consider
the G-module (V λ)∨ with the one-dimensional subspace `λ := (O(λ)⊗ k(1B))∨.
We know B stabilizes `λ and acts by λ. We claim that StabG(`λ) = B. For any
α ∈ R+, consider ϕα : SL2 → G. Then considering (V λ)∨ as a SL2-module, we see
that `λ has weight 〈λ, α∨〉 > 0. By classification of reduced parabolic subgroups
of reductive groups [Spr09, Theorem 8.4.3], StabSL2

(`λ) is either B′ or SL2. The
representation is non-trivial, which rules out the latter case by [Spr09, 7.2.5(2)].
Since this holds for every α ∈ R+, we know that the only Uα in StabG(`λ) are
α ∈ R+. By [Spr09, Theorem 8.4.3] again, we conclude that StabG(`λ) = B. Now
O(λ) is just the pullback of O(1) under G/B ↪→ P((V λ)∨). �

The above proof does not work in nonzero characteristic: suppose char k = 2.
Take the SL2-module V2 from [Spr09, 7.3.7(1)]. If we let P = StabSL2

(ke0), then
P (k) = B(k) but Lie(P ) = sl2. 2

4. Plücker relations on G/B

Recall the assumptions on G of the previous section. For any λ, µ ∈ X∗(T ),
we have O(λ)⊗O(µ) ' O(λ + µ). Taking global sections gives a canonical map
V λ⊗V µ → V λ+µ. We prove the following result.

2If char k = p 6= 0, then Pn := Spec k[x, y, z, w]/(zp
n
, xw − yz − 1) is a subgroup of SL2

containing B′ and is non-reduced for n > 0.
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Theorem 12. As a functor, G/B may be described as

Hom(S,G/B) = {Lλ ∈ Pic(S) for all λ ∈ X∗(T )+, V λ⊗OS � Lλ

satisfying Plücker relations}

where the Plücker relations require there to be, for λ, µ ∈ X∗(T )+, an isomorphism
Lλ⊗Lµ ' Lλ+µ such that

(V λ⊗OS)⊗OS
(V µ⊗OS)

��

// // Lλ⊗Lµ

∼
��

V λ+µ⊗OS // // Lλ+µ

commutes.

Theorem 12 generalizes to the following.

Theorem 13. Let P be a G-bundle on X. Then

HomX(S,P/B) = {Lλ ∈ Pic(S) for all λ ∈ X∗(T )+, (V λ)P ⊗
OX

OS � Lλ

satisfying Plücker relations}.

4.1. Take a dominant weight λ large enough so that O(λ) is very ample. By
Lemma 7, we have V λ⊗OG/B → O(λ) is surjective. Let the kernel be F . Then

ampleness implies H1(G/B,F ⊗O(mλ)) = 0 for all m� 0. Therefore by the long
exact sequence

V λ⊗V mλ ' Γ(G/B, V λ⊗O(mλ))→ Γ(G/B,O((m+ 1)λ)) ' V (m+1)λ

is surjective for m� 0. Thus if we replace λ by some mλ, we can assume that

Symk(V λ)→
⊕
n≥0

V nλ

is surjective. Note that V 0 = k and
⊕
V nλ is a Z≥0 graded k-algebra.

Lemma 14. Let X be a projective scheme over k with very ample line bundle L.
Then

X ' Proj
⊕
n≥0

Γ(X,Ln).

Proof. Take some closed embedding i : X → P(V ) with i∗O(1) ' L. Let A :=

Symk(V ∨). The ideal sheaf of i is of form L̃oc(I) for a homogeneous ideal I ⊂ A.
We have X ' Proj(A/I). By projection formula we have i∗i

∗O(n) ' O(n)⊗ i∗i∗O.

Note that i∗i
∗O ' L̃oc(A/I). Since Γ(X,Ln) ' Γ(P(V ), i∗(Ln)), we have⊕

n≥0

Γ(X,Ln) ' Γ̃(i∗i
∗O) ' Γ̃ L̃oc(A/I)

By a corollary of Serre’s theorem, we have A/I and Γ̃ L̃oc(A/I) agree in degrees
� 0. Thus they have the same Proj, which proves the claim. �

Applying Lemma 14 to G/B and O(λ), we get

(1) G/B ' Proj
⊕

V nλ.

We have the following description of mapping schemes into ProjA.
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Lemma 15 (233A.10.7). Let A be a non-negatively graded A0-algebra, such that
SymA0

(A1)→ A is surjective in degrees � 0. Assume A0 is Noetherian and A1 is
finitely generated as an A0-module.

For any scheme S, Hom(S,ProjA) consists of triples (Φ,L, α) where Φ : S →
SpecA0, L is a line bundle on S, and α is a homomorphism of quasi-coherent
sheaves of graded algebras on S

α : Φ∗(A)→
⊕
n≥0

L⊗n

which is surjective in degrees � 0. We identify two triples if the lines bundles are
isomorphic and the α’s agree in high degrees (in a compatible way). Here A = LocA
is the quasi-coherent sheaf on SpecA0.

Details and further generalities of this lemma can be found in [Gro61, II.3.7] or
[sta].

Proof. First note that it will suffice to prove the claim when S is affine (use a
gluing argument). Under the assumptions, OProjA(1) is a very ample line bundle
(see 233A.10.6). Suppose we have a map f : S → ProjA. Since A1 is finitely
generated over A0, we have

A→
⊕
n≥0

Γ(ProjA,O(n))

is an isomorphism in high degree (see 233A.10.6). By ampleness, O(n) is generated
by global sections for n� 0. Thus if we let π denote ProjA→ SpecA0, we have

α : π∗A →
⊕
n≥0

π∗π∗O(n)→
⊕
n≥0

O(n)

is surjective in high degree. Applying f∗ and setting L = f∗OProjA(1) gives (Φ =
π ◦ f,L, α).

In the other direction, suppose we are given (Φ,L, α). Recall that we are assum-
ing S = SpecB is affine. Thus α is a map of graded B-algebras

B ⊗
A0

A→
⊕
n≥0

Ln =: A′

We can compose with A → B⊗A0
A to get map A → A′ of graded A0-algebras.

Recall that a map of graded algebras A → A′ induces a map of Proj iff A′+ ⊂
rad(A′A+). This is satisfied since A′0 = B and we assume α is surjective in high
degrees. Thus we have a map

ProjA′ → ProjA.

We claim the canonical projection ProjA′ → SpecB is an isomorphism. This can
be checked locally, so we reduce to L ' B free. Then ProjA′ ' ProjB[T ] ' P0

B '
SpecB. We have thus constructed a map

f : SpecB ' ProjA′ → ProjA

The pullback of OProjA(1) along ProjA′ → ProjA is OProjA′(1), which can be
checked to coincide with L on SpecB (check on open affine subsets of SpecB with
L is trivialized, and note that the transition maps for Čech cocycles coincide).
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Lastly suppose we start with f : SpecB → ProjA and we want to check that

ProjA′

f̃

%%

∼
��

SpecB
f
// ProjA

commutes. This is a local assertion, so take a ∈ A1 and consider Spec(Aa)0 ⊂
ProjA on which OProjA(1) is trivialized. Take SpecBb ⊂ f−1(Spec(Aa)0). By
functoriality, it now suffices to check

Proj
⊕

(Lb)n

''

∼
��

SpecBb
f |
// Spec(Aa)0

� � // ProjA

commutes. Now Lb ' Bb is free. With a little work, this can be checked directly
from constructions.

This shows our above two maps are mutually inverse, which proves the claim. �

We can finally prove Theorem 12.

Proof of Theorem 12. Given a map f : S → G/B, we set Lλ := f∗O(λ). By
Lemma 7, we have V λ⊗OG/B � O(λ) is surjective, so applying f∗ gives V λ⊗OS �
Lλ. The Plücker relations are satisfied because they are on G/B.

Conversely if we are given V λ⊗OS � Lλ satisfying Plücker relations, if we take
a particular λ such that (1) holds, then Lemma 15 gives a map S → G/B. (Note
that we don’t actually need the data of V λ⊗OS � Lλ for all λ ∈ X∗(T )+, only
the multiples of our chosen λ.)

The proof of Lemma 15 shows that the two maps just described are inverse (and
that the latter map is independent of choice of λ). �

Proof of Theorem 13. This follows from Theorem 12 by descent. Add details. �

5. G/N is quasi-affine

To complete the picture of the flag variety G/B, we show that G/N is quasi-
affine, where N = Bu is the unipotent part of our Borel.

5.1. Universal property of V λ. As an aside, we talk a little about the represen-
tation theory of G and B. This can all be found in [Jan03, Ch. 3]

Definition 16. Let V be a B-representation. Then coindGB(V ), if it exists, is the
G-representation that is left adjoint to the forgetful functor, i.e., there exists natural
isomorphism

HomB(V,W ) ' HomG(coindGB(V ),W )

for all G-representations W .
Analogously, indGB(V ) is the G-representation that is right adjoint to the forgetful

functor, i.e.,
HomB(W,V ) ' HomG(W, indGB(V ))

for all G-representations W .

Lemma 17. Let λ ∈ X∗(T ). Then indGB(k−λ) ' V λ.
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Proof. Recall from Section 3 that

V λ = {f ∈ OG | f(gb) = λ(b)f(g) for g ∈ G(k), b ∈ B(k)}.
From the explicit description of the G-representation on V λ given in Section 2.2.1,
we have g.f(x) = f(g−1x), i.e., G acts on V λ ⊂ OG by left translation. Define

HomG(W,V λ)→ HomB(W,k−λ)

by taking φ to the map w 7→ φ(w)(1). Conversely, given ξ ∈ HomB(W,k−λ), set
φ : W → V λ ⊂ OG to be φ(w)(g) = ξ(g−1.w). The two given maps are inverses, so
we have the desired natural isomorphism. �

Lemma 18. Let λ ∈ X∗(T ). Then coindGB(kλ) ' indGB(k−λ)∨.

Proof. First take W to be a finite dimensional G-representation. Then we have

HomG(indGB(k−λ)∨,W ) ' HomG(W∨, indGB(k−λ))

' HomB(W∨, k−λ) ' HomB(kλ,W ).

These isomorphisms are natural. Now since any G-representation W is a direct limit
of finite dimensional G-representations [MFK94, §1, Lemma], and indGB(k−λ) ' V λ
(Lemma 17) is finite dimensional, we deduce that the above isomorphism holds for
any G-representation W . �

We have the canonical map V λ → k−λ : f 7→ f(1). The isomorphism in the
above proof is just given by precomposition by the dual map kλ → (V λ)∨.

5.2.

Lemma 19. The ring of global sections admits a grading

Γ(G/N,OG/N ) '
⊕

λ∈X∗(T )+

V λ

where the ring multiplication V λ⊗V µ → V λ+µ coincides with the map in the
Plücker relations.

Here we are considering rings graded in a commutative semigroup.

Proof. Since G/N is a geometric quotient, we have Γ(G/N,OG/N ) = (OG)N where
we consider the regular representation on OG by right translations. Since N is
normal in B, the regular representation of T on OG extends to a T -representation
on (OG)N [Jan03, Lemma 3.2]. We can therefore decompose (OG)N into weight
spaces. For λ ∈ X∗(T ), we get

Γ(G/N,O)λ = ((OG)N )λ ' HomB(kλ,OG) ' HomG(coindGB(kλ),OG).

Composition with OG → k : f 7→ f(1) gives an isomorphism

HomG(coindGB(kλ),OG) ' coindGB(kλ)∨.

Given ξ ∈ coindGB(kλ)∨, we define φ : coindGB(kλ)→ OG by φ(v)(g) = ξ(g.v). Now
Lemmas 17, 18 imply

Γ(G/N,O)λ ' V λ.
One can chase the maps defined in the lemmas above (I have done this) to see that
the above isomorphism is the same as the equality Γ(G/N,O)λ = V λ considered
inside OG.
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From the equality inside OG, the assertion concerning multiplication is obvious
given the discussion of tensor products at the beginning of Section 3. �

Let A := Γ(G/N,O). Lemma 19 shows A is a X∗(T )+ graded ring, where
X∗(T )+ is a commutative semigroup.

Definition 20. A scheme X is quasi-affine if the canonical map X → Spec Γ(X,O)
is a quasi-compact open embedding.

Lemma 21. The quotient G/N is quasi-affine.

Proof. From Chevalley’s theorem, we know there exists a finite dimensional repre-
sentation V with v ∈ V such that N = StabG(kv). Then N must act on kv by
some character. Since N is unipotent, this character is trivial. Therefore we have
have N = StabG(v), which gives a locally closed embedding G/N ↪→ V. Therefore
G/N is an open subscheme of an affine variety. By [sta, Lemma 19.13.4], G/N is
quasi-affine. �

Note that the map G → SpecA corresponding to A ⊂ OG is dominant and
factors through G → G/N → SpecA. Hence G/N → SpecA is a dominant open
embedding.

Since T normalizes N in B, we have (G/N)/T ' G/B. So there is an open of
SpecA whose quotient under T -action is isomorphic to the flag variety G/B.
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